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Preface

This is the proceedings of the 11th edition of the Algebraic Methodology and
Software Technology (AMAST) conference series. The first conference was held
in the USA in 1989, and since then AMAST conferences have been held on
(or near) five different continents and have been hosted by many of the most
prominent people and organizations in the field.

The AMAST initiative has always sought to have practical effects by devel-
oping the science of software and basing it on a firm mathematical foundation.
AMAST has interpreted software technology broadly, and has, for example, held
AMAST workshops in areas as diverse as real-time systems and (natural) lan-
guage processing. Similarly, algebraic methodology is interpreted broadly and
includes abstract algebra, category theory, logic, and a range of other math-
ematical subdisciplines. The truly distinguishing feature of AMAST is that it
seeks rigorous mathematical developments, but always strives to link them to
real technological applications. Our meetings frequently include industry-based
participants and are a rare opportunity for mathematicians and mathemati-
cally minded academics to interact technically with industry-based technologists.
Over the years AMAST has included industrial participants from organizations
specializing in safety-critical (including medical) systems, transport (including
aerospace), and security-critical systems, amongst others.

AMAST has continued to grow and change. Much of the work that was the
subject of early meetings is now established and used. A good deal of it has been
presented in the eight monographs that have so far appeared as part of Springer’s
LNCS series. Many of the issues that the AMAST community was concerned with
academically have now become part of major industrial organizations’ research
and development as security, correctness, and safety-critical performance become
more and more important in the systems we use daily. Other issues remain
unresolved, and new questions continually arise. What is certain is that in the
future the fundamental character of AMAST—serious mathematics developed
for real technology—will remain important.

The 11th edition of the conference was held in Kuressaare in Estonia, hosted
by the Institute of Cybernetics at Tallinn University of Technology. Among the
55 full submissions, the Programme Committee selected 24 regular papers and
3 system demonstrations. All submissions were reviewed by three PC members
with the help of external reviewers. In addition to the accepted papers, the
conference also featured invited talks by three distinguished speakers: Ralph
Back (Åbo Akademi University, Finland), Larry Moss (Indiana University, USA)
and Till Mossakowski (Universität Bremen, Germany).

After the successful dual meeting in Stirling in 2004, the conference was co-
located with Mathematics of Program Construction (MPC) for the second time.
We thank the MPC organizers for suggesting this co-location. It is also worth
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noting that AMAST enjoys the cooperation and overlapping organizational par-
ticipation with other like-minded conferences including CALCO, CMCS and
WADT.

AMAST 2006 was the result of a considerable effort by a number of people. It
is our pleasure to express our gratitude to the AMAST Programme Committee
and additional referees for their expertise and diligence in reviewing the sub-
mitted papers, and to the AMAST Steering Committee for its general guidance.
Our special thanks go to Tarmo Uustalu and his colleagues from the Institute of
Cybernetics for taking care of practical matters in the local organization. We are
also grateful to Andrei Voronkov for providing the EasyChair system, which was
used to manage the electronic submissions, the review process, the electronic PC
meeting, and to assemble the proceedings. Finally, we would like to express our
thanks to Springer for its continued support in the publication of the proceedings
in the Lecture Notes in Computer Science series.

April 2006 Michael Johnson
Varmo Vene
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Monica Nesi (Università degli Studi di L’Aquila, Italy)
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Incremental Software Construction
with Refinement Diagrams

Ralph-Johan Back

Åbo Akademi University, Department of Computer Science
Lemminkainenkatu 14 A, SF-20520 Turku, Finland

backrj@abo.fi

Abstract. We propose here a mathematical framework for incremental software
construction and controlled software evolution. The framework allows incremen-
tal changes of a software system to be described on a high architecture level, but
still with mathematical precision so that we can reason about the correctness of
the changes. The framework introduces refinement diagrams as a visual way of
presenting the architecture of large software systems. Refinement diagrams are
based on lattice theory and allow reasoning about lattice elements to be carried
out directly in terms of diagrams. A refinement diagram proof will be equivalent
to a Hilbert like proof in lattice theory. We show how to apply refinement dia-
grams and refinement calculus to the incremental construction of large software
system. We concentrate on three topics: (i) modularization of software systems
with component specifications and the role of information hiding in this approach,
(ii) layered extension of software by adding new features one-by-one and the role
of inheritance and dynamic binding in this approach, and (iii) evolution of soft-
ware over time and the control of successive versions of software.

M. Johnson and V. Vene (Eds.): AMAST 2006, LNCS 4019, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Recursive Program Schemes: Past, Present, and Future

Lawrence S. Moss

Department of Mathematics, Indiana University
831 East Third Street, Bloomington, IN 47405-7106 USA

lsm@cs.indiana.edu

Abstract. This talk describes work on one of the first applications of algebra
to theoretical computer science, the study of recursive program schemes. I would
like to put a lot of the past work in perspective and then to describe recent work by
Stefan Milius and myself which reworks the classical theory of uninterpreted and
interpreted recursive program schemes using tools from coalgebraic recursion
theory. Finally, I hope to speculate on whether the new work could be of interest
to those pursuing AMAST’s goal of ”setting of software technology on a firm,
mathematical basis.”

M. Johnson and V. Vene (Eds.): AMAST 2006, LNCS 4019, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Monad-Based Logics for Computational Effects

Till Mossakowski

DFKI Laboratory, Bremen, and
Department of Computer Science, University of Bremen

till@tzi.de

Abstract. The presence of computational effects, such as state, store,
exceptions, input, output, non-determinism, backtracking etc., compli-
cates the reasoning about programs. In particular, usually for each effect
(or each combination of these), an own logic needs to be designed.

Monads are a well-known tool from category theory that originally
has been invented for studying algebraic structures. Monads have been
used very successfully by Moggi [1] to model computational effects (in
particular, all of those mentioned above) in an elegent way. This has been
applied both to the semantics of programming languages (e.g. [2, 3, 4, 5])
and to the encapsulation of effects in pure functional languages such as
Haskell [6].

Several logics for reasoning about monadic programs have been in-
troduced, such as evaluation logic [7, 8], Hoare logic [9] and dynamic
logic [10, 11]. Some of these logics have a semantics and proof calculus
given in a completely monad independent (and hence, effect indepen-
dent) way. We give an overview of these logics, discuss completeness of
their calculi, as well as some application of these logics to the reasoning
about Haskell and Java programs, and a coding in the theorem prover
Isabelle [12].

References
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55–92
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State Space Representation for Verification
of Open Systems

Irem Aktug and Dilian Gurov

KTH Computer Science and Communication
Osquars Backe 2, 100 44

Stockholm, Sweden
{irem, dilian}@nada.kth.se

Abstract. When designing an open system, there might be no im-
plementation available for certain components at verification time. For
such systems, verification has to be based on assumptions on the un-
derspecified components. When component assumptions are expressed
in Hennessy-Milner logic (HML), the state space of open systems can be
naturally represented with modal transition systems (MTS), a graphical
specification language equiexpressive with HML. Having an explicit state
space representation supports state space exploration based verification
techniques. Besides, it enables proof reuse and facilitates visualization for
the user guiding the verification process in interactive verification. As an
intuitive representation of system behavior, it aids debugging when proof
generation fails in automatic verification.

However, HML is not expressive enough to capture temporal assump-
tions. For this purpose, we extend MTSs to represent the state space
of open systems where component assumptions are specified in modal
μ-calculus. We present a two-phase construction from process algebraic
open system descriptions to such state space representations. The first
phase deals with component assumptions, and is essentially a maximal
model construction for the modal μ-calculus. In the second phase, the
models obtained are combined according to the structure of the open
system to form the complete state space. The construction is sound and
complete for systems with a single unknown component and sound for
those without dynamic process creation. For establishing open system
properties based on the representation, we present a proof system which
is sound and complete for prime formulae.

1 Introduction

In an open system, certain components can join the system after it has been put
in operation. For example, applications can be loaded on a smart card after the
card has been issued (see e.g. [SGH04]). Since the implementations of certain
components are not yet available, the verification of the system has to be based
on behavioural assumptions on such components. Security protocols can be ver-
ified in this manner, for instance by treating an unpredictable attacker as an
unknown component of the system [1].

M. Johnson and V. Vene (Eds.): AMAST 2006, LNCS 4019, pp. 5–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



6 I. Aktug and D. Gurov

Modal transition systems (MTS) were introduced by Larsen as a graphical
specification language [2]. Certain kinds of properties are easier to express graph-
ically than in temporal logics. Each MTS specifies a set of processes as an interval
determined by necessary and admissable transitions. MTSs are equiexpressive
with Hennessy-Milner logic (HML), i.e. an HML formula can be characterized
by an MTS and vice versa. As a result, MTSs provide a natural representation
of the state space of open systems when assumptions on the behavior of the
not-yet-available components are specified in HML. When the assumptions are
temporal properties, however, MTSs are not expressive enough for this purpose.
In [3], we extend MTSs to represent the state space of open systems when the
component assumptions are written in the modal μ-calculus [4]. This logic adds
the expressive power of least and greatest fixed point recursion to HML. Besides
the must (necessary) and may (admissable) transitions of MTS, our notion,
extended modal transition system (EMTS) has sets of states (instead of single
states) as targets to transitions - an extension which is needed for dealing with
disjunctive assumptions, and well-foundedness constraints to handle least fixed
point assumptions.

Having a way to capture the state space of an open system explicitly can be
useful in various phases of the development of open systems. In the modeling
phase, this formalism can be used as an alternative means of graphical spec-
ification of open system behavior. In interactive verification, an explicit state
space representation facilitates visualization of the system behaviour, assisting
the user in guiding the proof. This visualization facility is beneficial in automatic
verification when the automatic proof construction fails and an understanding
of the open system behaviour becomes necessary for debugging. Furthermore,
computing the whole state space enables proof reuse when the same system is
to be checked for several properties.

In this paper, we address the problem of constructing an explicit state space
representation from an open system description and verifying open system prop-
erties based on this representation. In a process algebraic setting, the behaviour
of an open system can be specified by an open process term with assumptions
(OTA). An OTA consists of a process term equipped with a list of behavioral
assumptions on the free variables of the term. We offer a two-phase construction
that, under given restrictions, automatically extracts an EMTS from an OTA.
The first phase in the construction corresponds to a maximal model construction
for each component assumption. For the fixed point cases, a powerset construc-
tion is used that is similar to the one used in the Büchi automata constructions
of [5] and [6]. In the second phase, the maximal models are composed according
to the structure of the open system. The construction is sound (resp. complete)
if the set of systems denoted by the OTA is a subset (resp. superset) of the
denotation of the resulting EMTS. We show soundness of the construction for
systems without dynamic process creation, and soundness and completeness for
systems with a single unknown component. Finally, we present a proof system
for showing open system properties based on EMTSs. The proof system is sound
and complete for prime formulae, a prime formula being one that logically im-
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plies one of the disjuncts whenever it logically implies a disjunction. The relative
simplicity of the proof system and its use is an indication of the adequateness of
EMTSs for open system state space representation.

Related Work. In this strand of research, our work follows earlier work on using
maximal model constructions for modular verification for various fragments of
the μ-calculus: for ACTL by Grumberg and Long [7], ACTL* by Kupferman and
Vardi [8], and the fragment without least fixed points and diamond modalities
by Sprenger et al [9]. In automata based approaches (see for instance [10, 6, 11]),
various structures like alternating tree automata, Büchi and Rabin automata
have been employed for capturing temporal properties. Although expressively
powerful, we argue that these structures do not provide an intuitive representa-
tion of the state space for branching-time logics.

Proof system based methods have previously been suggested for the interactive
verification of open systems [12, 13] where modal μ-calculus is used to express
the temporal assumptions on components as well as the desired property of the
system. These interactive methods explore the state space implicitly as much as
it is necessary for the particular verification task. In contrast to these methods,
we separate the tasks of constructing a finite representation of the state space of
an open system from the task of verifying its properties. This separation provides
a state visualization facility to the user guiding the interactive proof, and offers
greater possibilities for proof reuse.

Organization. The paper is organized as follows. In section 2, we make the syntax
of OTAs precise by a brief account of the logic used in behavioral assumptions
and the process algebra used to define the process term. Section 3 is a summary of
important definitions related to the notion of EMTS. We present the translation
from OTA to EMTS in Section 4, and provide correctness results. In Section 5,
we give a proof system for showing open system properties of EMTSs. The last
section presents conclusions and identifies directions for future work.

2 Specifying Open Systems Behaviour

A system, the behaviour of which is parameterized on the behaviour of certain
components, is conveniently represented as a pair Γ � E, where E is an open
process-algebraic term, and Γ is a list of assertions of the shape X : Φ where X
is a process variable free in E and Φ is a closed formula in a process logic.

In the present study, we work with the class of Basic Parallel Processes
(BPP)[14]. The terms of BPP are generated by:

E ::= 0 | X | a.E | E + E | E ‖ E | fixX.E

where X ranges over a set of process variables ProcVar and a over a finite set of
actions A. We assume that ProcVar is partitioned into assumption process vari-
ables AssProcVar used in assertions, and recursion process variables RecProcVar
bound by fix. A term E is called linear if every assumption process variable oc-
curs in E at most once. The operational semantics of closed process terms (called
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processes and ranged over by t) is standard, where the operator ‖ signifies merge
composition. Closed process terms give rise to labeled transition systems (LTS)
through this standard semantics.

As a process logic for specifying behavioural assumptions of components, as
well as for specifying system properties to be verified, we consider the modal
μ-calculus [4]. Its formulas are generated by:

Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a] Φ | 〈a〉Φ | νZ.Φ | μZ.Φ

where Z ranges over a set of propositional variables PropVar. The semantics of
the μ-calculus is standard and given in terms of its denotation on some LTS
T =(ST , A, −→T ). The denotation of a modal μ-calculus formula Φ, written
||Φ||TV , is a subset of the set of states of T , where V : PropV ar → ST is a
valuation that maps propositional variables to states of T . As usual, we write
t |=T

V Φ whenever t ∈ ||Φ||TV . In the sequel, we omit the subscript V when Φ is a
closed formula.

We say that an OTA Γ � E is guarded when the term E and all modal μ-
calculus formula Φ in Γ are guarded. Similarly, we say an OTA is linear when
the term it contains is linear.

The behaviour specified by an open term with assumptions is given with
respect to a LTS T that is closed under the transition rules and is closed under
substitution of processes for assumption process variables in subterms of the
OTA. The denotation of an OTA is then the set of all processes obtained by
substituting each assumption process variable in the term by a process from T
satisfying the respective assumptions.

Definition 1 (OTA Denotation). Let Γ � E be an OTA, T be an LTS, and
ρR : RecProcVar → ST be a recursion environment. The denotation of Γ � E
relative to T and ρR is defined as:

�Γ � E�ρR � {EρRρA | ∀(X : Φ) ∈ Γ. ρA(X) |=T Φ}
where ρA : AssProcVar→ ST ranges over assumption environments.

Example. Consider an operating system in the form of a concurrent server that
spawns off Handler processes each time it receives a request. These processes run
system calls for handling the given requests to produce a result (modeled by the

action out). Handler is defined as Handler
def
= In ‖ out.0 where In

def
= in.In.

Although it is possible to communicate with request handlers through the at-
tached channel (modeled by the action in), they do not react to further input.
A property one would like to prove of such a server is that it stabilizes when-
ever it stops receiving new requests. Eventual stabilization can be formalized
in the modal μ-calculus as stab Δ= νX.μY. [in]X ∧

[
out

]
Y . We can reduce this

verification task to proving that the open system modeled by the OTA

X : stab � X ‖Handler

which consists of Handler and any stabilizing process X , eventually stabilizes.
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3 Extended Modal Transition Systems

In [3], we proposed Extended Modal Transition Systems (EMTS) as an explicit
state space representation for open systems with temporal assumptions, with
an extensional representation for the well-foundedness constraints. In this sec-
tion, we summarize the main definitions, and propose a concrete representa-
tion of well-foundedness constraints. The notion of EMTS is based on Larsen’s
Modal Transition Systems [2]. Kripke Modal Transition Systems (KMTS) have
been first introduced by Huth et. al. [15], and later refined by Grumberg and
Shoham [16] for representing state space abstractions in an abstraction refine-
ment framework. EMTS is similar to KMTS with a constraint added to deal
with termination assumptions.

In addition to may and must transitions for dealing with modalities, EMTSs
include sets of states (instead of single states) as targets to transitions to capture
disjunctive assumptions, and a set of prohibited infinite runs defined through a
coloring function to represent termination assumptions.

Definition 2 (EMTS). An extended modal transition system is a structure

E = (SE , A,−→�
E ,−→�

E , c)

where (i) SE is a set of abstract states, (ii) A is a set of actions, (iii) −→�
E ,−→�

E
⊆ SE ×A× 2SE are may and must transition relations, and (iv) c : SE → Nk is
a coloring function for some k ∈ N.

May transitions of an EMTS show possible behaviours of the closed systems
represented, while must transitions specify behaviour shared by all these closed
systems. A run (or may–run) of E is a possibly infinite sequence of transitions

ρE = s0
a0−→E s1

a1−→E s2
a2−→E . . . where for every i ≥ 0, si

ai

−→�
E S for

some S such that si+1 ∈ S. Must–runs are defined similarly. We distinguish

between two kinds of a-derivatives of a state s: ∂�
a (s) � {S | s

a

−→�
E S} and

∂�
a (s) � {S | s

a

−→�
E S}.

The coloring function c specifies a set WE of prohibited infinite runs, which
plays a similar role to fairness constraints of e.g. [7], by means of a parity accep-
tance condition (cf. [17, 10]). The function c is extended to infinite runs so that
c(ρE) = (c(s0)(1) · c(s1)(1) . . . , . . . , c(s0)(k) · c(s1)(k) . . .) is a k-tuple of infinite
words where c(s)(j) denotes the jth component of c(s). Let inf (c(ρE)(i)) denote
the set of infinitely occurring colors in the ith word of this tuple. Then the run
ρE is prohibited, ρE ∈ WE , if and only if max (inf (c(ρE)(i))) is odd for some
1 ≤ i ≤ k, i.e. the greatest number that occurs infinitely often in one of these k
infinite words is odd.

Next, we define a simulation relation between the states of an EMTS as a
form of mixed fair simulation (cf. e.g. [7, 18]).

Definition 3 (Simulation). R ⊆ SE × SE is a simulation relation between the
states of E if whenever s1Rs2 and a ∈ A:
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1. if s1
a

−→�
E S1, then there is a S2 such that s2

a

−→�
E S2 and for each s′1 ∈ S1,

there exists a s′2 ∈ S2 such that s′1Rs′2;

2. if s2
a

−→�
E S2, then there is a S1 such that s1

a

−→�
E S1 and for each s′1 ∈ S1,

there exists a s′2 ∈ S2 such that s′1Rs′2;
3. if the run ρs2 = s2

a1−→E s1
2

a2−→E s2
2

a3−→E . . . is in WE then every infinite
run ρs1 = s1

a1−→E s1
1

a2−→E s2
1

a3−→E . . . such that si
1R si

2 for all i ≥ 1 is also
in WE .

We say that abstract state s2 simulates abstract state s1, denoted s1 � s2, if
there is a simulation relation R such that s1Rs2. Simulation can be generalized
to two different EMTSs E1 and E2 in the natural way.

Labeled transition systems can be viewed as a special kind of EMTS, where:
−→�

E =−→�
E , the target sets of the transition relation are singleton sets of states,

and the set of prohibited runs W is empty. We give the meaning of an abstract
state relative to a given LTS, as the set of concrete LTS states simulated by the
abstract state.

Definition 4 (Denotation). Let E be an EMTS, and let T be an LTS. The
denotation of abstract state s ∈ SE is the set �s�T � {t ∈ ST | t � s}. This
notion is lifted to sets of abstract states S′ ⊆ SE in the natural way: �S′�T �⋃
{�s�T | s ∈ S′}.

In the rest of the paper, we shall assume that EMTSs obey the following consis-

tency restrictions: −→�
E⊆−→�

E , s
a

−→�
E S implies S is non-empty, and W does

not contain runs corresponding to infinite must–runs of the EMTS. The mean-
ing of abstract states would not be altered if the targets of may transitions were
restricted to singletons, but we prefer the targets of both kinds of transitions to
be sets of states for reasons of uniformity.

In section 5, we present a proof system for proving properties of abstract
states. For this purpose, we define when an abstract state s satisfies a modal
μ-calculus formula Φ. The global nature of the set W in EMTSs makes it cum-
bersome to define the denotation of a fixed point formula compositionally as a
set of abstract states. We therefore give an indirect definition of satisfaction, by
means of the denotation �s�T of a state s.

Definition 5 (Satisfaction). Let E be an EMTS, s ∈ SE be an abstract state
of E and Φ be a modal μ-calculus property. Then s satisfies Φ under valuation
V : PropVar → 2SE , denoted s |=E

V Φ, if and only if for any LTS T �s�T |=T
V Φ

where valuation V : PropVar → 2ST is induced by V as V(Z) Δ=
⋃
{�s�T | s ∈

V(Z)}.

Example. The state space of the open system introduced in the previous sec-
tion is captured by the EMTS in Figure 1. For any labeled transition system
T , the processes simulated by the state s1 are those denoted by the open term
X : stab � X ‖Handler. The EMTS consists of six abstract states, each state
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c(s1) = c(s4) = 0
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c(s2) = c(s5) = 2
s4
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Fig. 1. EMTS for X : stab � X ‖ Handler

denoting the set of processes which it simulates. For instance, states s5 and s6
in the example denote all processes which can engage in arbitrary interleavings
of in and out actions, but so that in has to be enabled throughout while out has
not. Infinite runs stabilizing on out actions are prohibited by the coloring of s3
and s6. A proof of eventual stabilization of the system using this representation
can be found in [19].

4 From OTA to EMTS

In this section, we address the problem of providing an explicit state space
representation for a given open term Γ � E, by means of an EMTS E . While
it is tempting to define −→�

E and −→�
E through transition rules, the global

nature of the well-foundedness constraints suggests that a direct construction
would be more convenient for automatic construction. We propose a two-phase
construction ε that translates an open term Γ�E to an EMTS, denoted ε(Γ�E).
In the first phase, an EMTS is constructed for each underspecified component.
This part is essentially a maximal model construction as developed by Grumberg
and Long for ACTL [7], extended to ACTL* by Kupferman and Vardi [8], and
applied by Sprenger et al to the fragment of the modal μ-calculus without least
fixed points and diamond modalities [9]. For the construction of the fixed point
cases, we adapt a powerset construction used earlier to convert fragments of the
modal μ-calculus to Büchi automata which was introduced by Dam [5] for linear
time μ-calculus and extended by Kaivola [6] to the Π2 fragment. The second
phase consists of combining the EMTSs produced in the first step according to
the structure of the term E. We then show the correctness of the construction by
relating the set of states simulated by the constructed EMTS to the denotation
of the given OTA.
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4.1 Maximal Model Construction

We define the function ε which maps modal μ-calculus formulas to triples of the
shape (E , S, λ), where E = (SE , A,−→�

E ,−→�
E , c) is an EMTS, S ⊆ SE is a set

of start states of E , and λ : SE → 2PropV ar is a labeling function.
The function is defined inductively on the structure of Φ as shown in Table 1.

The meaning of open formulae that arises in intermediate steps are given by
the valuation which assigns the whole set of processes ST to each propositional
variable. Essentially, the particular valuation used does not play a role in the
final EMTS, since the properties used as assumptions of an OTA are closed.

In the definition, let ε(Φ1) be ((SE1 , A, −→�
E1

, −→�
E1

, c1), S1, λ1) and ε(Φ2) be
((SE2 , A, −→�

E2
, −→�

E2
, c2), S2, λ2) where SE1 and SE2 are disjoint sets. The new

state snew is not in SE1 and a and a′ are actions in A. The coloring functions
c1 : SE1 → Nk1 and c2 : SE2 → Nk2 color the states of E1 and E2 with integer
tuples of length k1 and k2 respectively.

For a set S, S |� denotes the largest transition-closed set contained in S such
that there is no element s ∈ S |� with the empty set as the target to a must

transition, that is, there is no s such that for some a ∈ A, s
a

−→�
E ∅ and each

state s is reachable from some start state.
In what follows, we explain the various cases of the construction. The EMTS

for formula tt consists of the single state stt with may transitions to itself for
every action, while the EMTS for ff is the empty EMTS. The EMTS for a
propositional variable consists of a single start state with may transitions to stt
for each action.

The states of the EMTS for the conjunction of two formulas is the cross
product of the states of the EMTSs constructed for each conjunct, excluding
pairs with incompatible capabilities. If a state s1, which has a must transition
for an action a to some set S1, is producted with a state s2 that has multiple may
transitions for a, then the product state has a must a-transition to the product
of S1 with the set of all may-successors of s2. The color of a state of ε(Φ1 ∧ Φ2)
is the concatenation of the colors of the paired states. In the case of disjunction,
the set of start states of ε(Φ1 ∨ Φ2) is the union of the start states of ε(Φ1) and
ε(Φ2) which reflects the union of their denotation. The color of a state is given
by padding with 0’s from either the left or right.

For the modal cases, a new state snew is set as the start state. The EMTS for
ε([a] Φ) has a single may transition for a, which is to the set of initial states of
ε(Φ). This is to ensure all simulated processes satisfy Φ after engaging in an a.
Additionally, there is a may transition to stt for all other actions. The EMTS for
ε(〈a〉Φ) includes a must transition for a from this start state to the start states
of ε(Φ), along with may transitions for all actions to stt forcing the simulated
processes to have an a transition to some process satisfying Φ and allowing any
other transitions besides.

The construction for fixed point formulae is a powerset construction, which is
similar to the constructions given in [5] and [6] for the purpose of constructing
Büchi Automata for linear time and the alternation-depth class Π2 fragments
of the μ-calculus, respectively. The states of ε(σZ.Φ) consist of sets of states of
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Table 1. Maximal Model Construction

– ε(tt) Δ= (({stt}, A, −→�

E , ∅, {stt �→ 0}), {stt}, {stt �→ ∅})

where stt

a

−→�

E {stt} for all a ∈ A.

– ε(ff)Δ= ((∅, A, ∅, ∅, ∅), ∅, ∅)

– ε(Z)Δ=(({snew, stt}, A, −→�

E , ∅, {stt �→ 0, snew �→ 0}), {snew}, {snew �→ {Z}, stt �→ ∅})

where snew

a

−→�

E {stt} and stt

a

−→�

E {stt} for all a ∈ A.

– ε(Φ1 ∧ Φ2)
Δ=(((SE1 × SE2)|�, A, −→�

E , −→�

E , W ), (SE1 × SE2)|� ∩ (S1 × S2), λ) where

−→�

E

Δ= {(s, r)
a

−→�

E S′ × ∪∂�

a (r) | s
a

−→�

E1
S′}

∪ {(s, r)
a

−→�

E ∪∂�

a (s) × R′ | r
a

−→�

E2
R′}

∪ {(s, r)
a

−→�

E S′ × R′ | s
a

−→�

E1
S′ ∧ r

a

−→�

E2
R′ ∧ S′ 	∈ ∂�

a (s) ∧ R′ 	∈ ∂�

a (r)}

−→�

E

Δ= {(s, r)
a

−→�

E (S′ × ∪∂�

a (r)) | s
a

−→�

E1
S′}

∪ {(s, r)
a

−→�

E (∪∂�

a (s) × R′) | r
a

−→�

E2
R′}

c
Δ= {(s, r) �→ c1(s) · c2(r) | s ∈ SE1 ∧ r ∈ SE2}

λ
Δ= {(s, r) �→ λ1(s) ∪ λ2(r) | s ∈ SE1 ∧ r ∈ SE2}

– ε(Φ1 ∨ Φ2)
Δ= ((SE1 ∪ SE2 , A, −→�

E , −→�

E , c), S1 ∪ S2, λ1 ∪ λ2) with:

−→�

E

Δ= −→�

E1
∪ −→�

E2

−→�

E

Δ= −→�

E1
∪ −→�

E2

c
Δ= {s �→ c1(s) · 0k2 | s ∈ SE1} ∪ {s �→ 0k1 · c2(s) | s ∈ SE2}

– ε([a] Φ1) Δ=((SE1 ∪ {snew, stt}, A, −→�

E , −→�

E1
, c), {snew}, λ) with:

−→�

E

Δ= −→�

E1
∪{stt

a′

−→�

E {stt} | a′ ∈ A} ∪ {snew

a

−→�

E S1}

∪ {snew

a′

−→�

E {stt} | a′ 	= a ∧ a′ ∈ A}

c
Δ= c1 ∪ {snew �→ 0k1} ∪ {stt �→ 0k1}

λ
Δ= λ1 ∪ {snew �→ ∅} ∪ {stt �→ ∅}

– ε(〈a〉 Φ1)
Δ= ε(ff) if S1 = ∅

ε(〈a〉 Φ1)
Δ= ((SE1 ∪ {snew, stt}, A, −→�

E , −→�

E , c), {snew}, λ) otherwise, with:

−→�

E

Δ= −→�

E1
∪{snew

a

−→�

E S1} ∪ {snew

a′

−→�

E {stt} | a′ ∈ A} ∪ {stt

a′

−→�

E {stt} | a′ ∈ A}

−→�

E

Δ= −→�

E1
∪{snew

a

−→�

E S1}

c
Δ= c1 ∪ {snew �→ 0k1} ∪ {stt �→ 0k1}

λ
Δ= λ1 ∪ {snew �→ ∅} ∪ {stt �→ ∅}

– ε(σZ.Φ1) ((2SE1 |�, A,−→�

E ,−→�

E , cσ), 2SE1 |� ∩{{s} | s ∈ S1}, λ) where σ ∈ {ν, μ} with:

−→�

E

Δ= {{s1, . . . , sn}
a

−→�

E S | ∃i.∃S′
i.si

a

−→�

E1
S′

i∧

S = ∂P ((∪∂�

a (s1), . . . , S′
i, . . . ,∪∂�

a (sn)), S1, λ1, Z)}

∪ {{s1, . . . , sn}
a

−→�

E S | ∀j.∃S′
j.sj

a

−→�

E1
S′

j ∧ S′
j 	∈ ∂�

a (sj)∧
S = ∂P ((S′

1, . . . , S′
n), S1, λ1, Z)}

−→�

E

Δ= { {s1, . . . , sn}
a

−→�

E S | ∃i.∃S′
i.si

a

−→�

E1
S′

i∧

S = ∂P ((∪∂�

a (s1), . . . , S′
i, . . . ,∪∂�

a (sn)), S1, λ1, Z)}

cν({s1, . . . , sn})(j) Δ=

8>>><
>>>:

maxodd
1≤i≤n

(c1(si)(j)) if ∀i.Z 	∈ λ1(si)

even�

s∈SE1

c1(s)(j) if ∃i.Z ∈ λ1(si)

cμ({s1, . . . , sn})(j) Δ=

8>>><
>>>:

maxodd
1≤i≤n

(c1(si)(j)) if ∀i.Z 	∈ λ1(si)

odd�

s∈SE1

c1(s)(j) if ∃i.Z ∈ λ1(si)

λ
Δ= {{s1, . . . , sn} �→

S
1≤i≤n

λ1(si) − {Z} | {s1, . . . , sn} ∈ 2SE1 }
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ε(Φ) and its start states are singletons containing some start state of ε(Φ). An
invariant of the maximal model construction is that start states do not have
incoming transitions. (The case for ε(tt) is the only exception and can be easily
adapted to satisfy the invariant.) For a transition of state q = {s1, . . . , sn} of
ε(σZ.Φ), each state si has a transition in ε(Φ). A member state of the target
of this transition, then, contains a derivative for each si. A member of the tar-
get state additionally contains an initial state of ε(Φ) if one of the derivatives
included is labeled by Z. The definition of Table 1 makes use of the target set
function ∂P defined below.

Definition 6 (Target Set Function ∂P). Let Φ be a modal μ-calculus for-
mula, σ be either μ or ν, ε(Φ) be (E1,S,λ) where E1 = (SE1 , A,−→�

E ,−→�
E , c)

is an EMTS, S ⊆ SE1 is a set of start states, λ : SE1 → 2PropV ar is a func-
tion that maps states of E to propositional variables, c : SE → Nk is a col-
oring function that maps states of E to k-tuples, and let Z ∈ PropV ar be a
propositional variable. Given a tuple consisting of a target set for each element
of a state of ε(σZ.Φ), the function ∂P : (2SE1 × . . . × 2SE1 ) × 2SE1 × (SE1 →
2PropV ar) × PropV ar → 22SE1 defines the target set of a transition of ε(σZ.Φ)
for this state as follows:

∂P((S1, . . . , Sn), S, λ, Z) Δ= {{s1, . . . , sn} | ∀i.si ∈ Si∧ � ∃j.Z ∈ λ(sj)}∪
{{s1, . . . , sn, s0} | ∀i.si ∈ Si ∧ ∃j.Z∈λ(sj) ∧ s0∈S}

Each component of the color of state q is determined by comparing the corre-
sponding entries of the member states si. When, for at least one si, this entry
is odd, the greatest of the corresponding odd entries is selected as the entry of
q, otherwise the maximum entry is selected for the same purpose. In Table 1,
the function maxodd selects the greater of two numbers if both of them are odd
or both of them are even, and the odd one otherwise. The color of q is further
updated if it contains a state si labeled by Z. When Z identifies a greatest fixed
point formula, each entry of the constructed tuple is defined to be the least even
upper bound of the integers used in this entry of ε(Φ). Whereas, when Z identi-
fies a least fixed point formula, the least odd upper bound of the integers is the
entry for the color of q. In Table 1, least even and least odd upper bounds are

denoted by the operators
even
� and

odd
� , respectively.

4.2 Composing EMTSs

We extend the function ε to the domain of OTAs so that ε(Γ � E) = (E ,S,λ),
where E = (SE , A,−→�

E ,−→�
E , c) is an EMTS, S ⊆ SE is the set of start states

of E , and λ : SE → 2RecProcV ar is a labeling function.
The function ε is defined inductively on the structure of E as shown in Table 2.

In the definition, we let ε(Γ � E1) be ((SE1 , A, −→�
E1

, −→�
E1

, c1), S1, λ1) and
ε(Γ �E2) be ((SE2 , A, −→�

E2
, −→�

E2
, c2), S2, λ2), where SE1 and SE2 are disjoint

sets. The new state snew is not in SE1 . The coloring functions c1 : SE1 → Nk1

and c2 : SE2 → Nk2 color the states of E1 and E2 with integer tuples of length k1
and k2 respectively.
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Table 2. EMTS Construction for Process Algebra Terms

– ε(Γ � 0)Δ=(({snew}, A, ∅, ∅, {snew �→ 0}), {snew}, {snew �→ ∅})
– ε(Γ � X)Δ= ε(Φ) if X ∈ AssProcV ar

where Φ =
X:Ψ ∈ Γ

Ψ ( defaults to tt when Γ contains no assumption on X ).

– ε(Γ �X)Δ=(({snew}, A, ∅, ∅, {snew �→ 0}), {snew}, {snew �→ {X}}) if X ∈ RecProcV ar

– ε(Γ � a.E1)
Δ= ((SE1 ∪ {snew}, A, −→�

E , −→�

E , c), {snew}, λ1 ∪ {snew �→ ∅}) with:

−→�

E
Δ= −→�

E1
∪{snew

a

−→�

E S1}

−→�

E
Δ= −→�

E1
∪{snew

a

−→�

E S1}
c

Δ= c1 ∪ {snew �→ 0k1}

– ε(Γ � E1 + E2)
Δ= ((SE1 ∪ SE2 ∪ (S1 × S2), A, −→�

E , −→�

E , c), S1 × S2, λ)

−→�

E
Δ= −→�

E1
∪ −→�

E2
∪{(s, r)

a

−→�

E S′ | s ∈ S1 ∧ r ∈ S2 ∧ (s
a

−→�

E1
S′ ∨ r

a

−→�

E2
S′)}

−→�

E
Δ= −→�

E1
∪ −→�

E2
∪{(s, r)

a

−→�

E S′ | s ∈ S1 ∧ r ∈ S2 ∧ (s
a

−→�

E1
S′ ∨ r

a

−→�

E2
S′)}

c
Δ= {s �→ c1(s) · 0k2 | s ∈ SE1} ∪ {r �→ 0k1 · c2(r) | r ∈ SE2}
∪ {(s, r) �→ c1(s) · c2(r) | (s, r) ∈ S1 × S2}

λ
Δ= λ1 ∪ λ2 ∪ {(s, r) �→ λ1(s) ∪ λ2(r) | s ∈ S1 ∧ r ∈ S2}

– ε(Γ � fixX.E1)
Δ=((SE1 , A, −→�

E , −→�

E , c1), S1, λ) with:

−→�

E
Δ= {s

a

−→�

E S | (s
a

−→�

E1
S) ∨

(∃s1 ∈ S1.s1

a

−→�

E1
S ∧ X ∈ λ1(s) ∧ s is reachable from s1)}

−→�

E
Δ= {s

a

−→�

E S | (s
a

−→�

E1
S) ∨

(∃s1 ∈ S1.s1

a

−→�

E1
S ∧ X ∈ λ1(s) ∧ s is reachable from s1)}

λ
Δ= {s �→ (λ1(s) − {X}) | s ∈ SE1}

– ε(Γ � E1 ‖ E2)
Δ= ((SE1 × SE2 × {1, 2}, A, −→�

E , −→�

E , c), S1 × S2 × {1, 2}, λ)

−→�

E
Δ= {(s, r, x)

a

−→�

E S′ × {r} × {1} | s
a

−→�

E1
S′}

∪ {(s, r, x)
a

−→�

E {s} × R′ × {2} | r
a

−→�

E2
R′}

−→�

E
Δ= {(s, r, x)

a

−→�

E S′ × {r} × {1} | s
a

−→�

E1
S′}

∪ {(s, r, x)
a

−→�

E {s} × R′ × {2} | r
a

−→�

E2
R′}

c
Δ= {(s, r, 1) �→ c1(s) · 0k2 | s ∈ SE1 ∧ r ∈ SE2}
∪ {(s, r, 2) �→ 0k1 · c2(r) | s ∈ SE1 ∧ r ∈ SE2}

λ
Δ= {(s, r, x) �→ ∅ | s ∈ SE1 ∧ r ∈ SE2 ∧ x ∈ {1, 2}}

The EMTS corresponding to the nil process 0 consists of an abstract state
without outgoing transitions, indicating that no transition is allowed for
processes simulated by this state. If a process variable X in the term E stands
for an underspecified component of the system, that is if X is an assumption
process variable, then the EMTS for X is a maximal model for the conjunction
of the properties specified for this component in the assumption list Γ .

The EMTS for a recursion process variable X is a single state without outgo-
ing transitions, since the capabilities of the processes simulated are determined
by the binding fix-expression. The function λ labels the state X . Given the EMTS
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for the term of the fix-expression where X is free, the transitions of the start
states are transferred to the states labeled by X .

The EMTS for a subterm prefixed by an action a is given by a start state
with a must a-transition to the set of start states of the EMTS for the subterm.
The EMTS for the sum operator consists of an EMTS where the start states
are the cross product of the start states of the EMTSs for the subterms. It is
assumed for this case that there are no incoming transitions to the start states
of the EMTSs being combined. This is an invariant of the construction, except
the case for tt which can be trivially converted to an equivalent EMTS to satisfy
the property.

Finally, the states of the EMTS for a parallel composition of two components
consist of a state from each component. Each state has transitions such that one
of the components make a transition while the other stays in the same state.
Each state is further marked by 1 or 2 to keep track of which component has
performed the last transition; this is necessary to enable a run of the composition
if the interleaved runs are enabled.

4.3 Correctness Results

The aim of the above construction is to capture, by means of an EMTS, exactly
those behaviors denoted by the given OTA. The construction is sound (resp.
complete) if the denotation of the OTA is a subset (resp. superset) of the deno-
tation of the resulting EMTS. Our first result establishes that the first part of
the construction is a maximal model construction for the modal μ-calculus.

Theorem 1. Let T be a transition-closed LTS, Φ be a closed and guarded modal
μ-calculus formula and ε(Φ) = (E, S, λ). Then �S�T = ||Φ||T .

Our next result shows that the construction is sound and complete when as-
sumptions exist on only one of the components that are running in parallel and
the rest of the system is fully determined.

Theorem 2. Let T be a transition-closed LTS, Γ �E‖t be a guarded linear OTA
where E does not contain parallel composition and t is closed, and let ε(Γ �E‖t)
= (E, S, λ). Then �S�T is equal to the set �Γ �E ‖t�ρ0 up to bisimulation, where
ρ0 maps each recursion process variable X to 0.

Theorems 1 and 2 are proved by induction on the structure of the logical formula
and the process term, respectively. The proofs can be found in [19].

In the general case, when multiple underspecified components run in parallel,
we only have soundness: our construction is sound for systems without dynamic
process creation. For systems with dynamic process creation, the construction
does not terminate.

Theorem 3. Let T be a transition-closed LTS, Γ � E be a guarded linear OTA
where every recursion process variable in the scope of parallel composition is
bound by a fix operator in the same scope, and let ε(Γ � E) = (E, S, λ). Then
the set �S�T includes �Γ � E�ρ0 up to bisimulation.
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The proof of the theorem is as the proof of Theorem 2, but includes a more
general case for parallel composition and can be found in [19].

Our last result reflects the fact that verification of open systems in the pres-
ence of parallel composition is undecidable for the modal μ-calculus in general.
Completeness results can, however, be obtained for various fragments of the μ-
calculus, such as ACTL, ACTL* and the simulation logic of [9]. In our approach,
the tasks of constructing a finite representation of the state space in the form
of an EMTS and the task of verifying properties of this representation are sep-
arated. This allows different logics to be employed for expressing assumptions
on components and for specifying system properties, giving rise to more refined
completeness results.

5 A Proof System for EMTS

In [3], we presented a proof system for verifying that an abstract state s of
an EMTS E satisfies a modal μ-calculus formula Φ. In this section, we give a
summary of this proof system and provide an alternative termination condition
that uses the coloring function c instead of the earlier condition that assumed
an extensional definition of the set of prohibited runs WE . The system is a
specialization of a proof system by Bradfield and Stirling [20, 21] for showing
μ-calculus properties for sets of LTS states. The relationship between the two
proof systems is clear when one considers that each EMTS state denotes a set
of LTS states.

A proof tree is constructed using the rules below, where σ ranges over μ and ν.
The construction starts with the goal and progresses in a goal-directed fashion,
checking at each step if a terminal node was reached.

s �EV Φ ∧ Ψ

s �EV Φ s �EV Ψ

s �EV Φ ∨ Ψ

s �EV Φ

s �EV Φ ∨ Ψ

s �EV Ψ

s �EV σZ.Φ

s �EV Z

s �EV [a] Φ
s1 �EV Φ . . . sn �EV Φ

{s1, . . . , sn} = ∪ ∂�
a (s)

s �EV Z

s �EV Φ
Z identifies σZ.Φ

s �EV 〈a〉Φ
s1 �EV Φ . . . sn �EV Φ

{s1, . . . , sn} ∈ ∂�
a (s)

A successful tableau (or proof) is a finite proof tree having successful terminals
as leaves. If n : r �EV Z is a node where Z identifies a fixed point formula, and
there is an identical ancestor node of n, n′ : r �EV Z and for any other fixed point
variable Y on this path, Z subsumes Y , then node n is called a σ-terminal. So
no further rules are applied to it. The most recent node making n a σ-terminal
is named n’s companion. The conditions for a leaf node r �EV Ψ of a proof tree
to be a successful terminal are listed below.

Successful Terminals

1. Ψ = tt, or else Ψ = Z, Z is free in the initial formula, and r ∈ V(Z)
2. Ψ = [a] Φ and ∪∂�

a (r) = ∅
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3. Ψ = Z where Z identifies a fixed point formula σZ.Φ, and the sequent is a
σ-terminal with companion node n : r �EV Ψ , then
(a) If σ = ν, then the terminal is successful.
(b) If σ = μ, then the terminal is successful if every infinite run of the EMTS

that corresponds to an infinite sequence of trails of the companion node
n0 is in WE . (The notion of trail is explained below.) When the set WE is
encoded using a coloring function c, the condition is that for any set ST

of trails of n0, there should exist 1 ≤ j ≤ k, so that max( ∪
T∈ST

c(α(T ))(j))

is odd. This ensures, for an infinite run wn0 = α(T1) ◦ α(T2) ◦ α(T3) . . .
where for all i ≥ 1, Ti is a trail of n0, that there exists some 1 ≤ j′ ≤ k
such that max (inf (c(wn0)(j′))) is odd.

Unsuccessful Terminals

1. Ψ = ff, or else Ψ = Z, Z is free in the initial formula, and r �∈ V(Z)
2. Ψ = 〈a〉Φ and ∪∂�

a (r) = ∅
3. Ψ = Z where Z identifies the least fixed point formula μZ.Φ, and the se-

quent is a σ-terminal with companion node n0, then the terminal is unsuc-
cessful if there exists a set ST of trails of n0 such that for every 1 ≤ j ≤ k,
max ( ∪

T∈ST

c(α(T ))(j)) is even. This means that some infinite run wn0 of the

EMTS, which corresponds to an infinite sequence of trails of the companion
node n0, is not in WE .

Trails and corresponding runs are defined as follows. Assume that node
nk:r �EV Z is a μ-terminal and node n0:r �EV Z is its companion. A trail T
of the companion node n0 is a sequence of state–node pairs (r, n0), . . . , (r, nk)
such that for all 0 ≤ i < k, one of the following holds:

1. ni+1 : ri+1 �EV Ψi+1 is an immediate successor of ni : ri �EV Ψi, or
2. ni is the immediate predecessor of a σ-terminal node n′ : r′ �EV Z ′ where

n′ �= nk whose companion is nj : r′ �EV Z ′ for some j : 0 ≤ j ≤ i, ni+1 = nj ,
and ri+1 = r′.

In order to convert a trail to a corresponding run, we use the function α, which
returns the empty string when the trail contains only one pair, and is defined
for longer trails as follows:

α((r1, n1) · (r2, n2) · T ) Δ=

⎧⎪⎪⎨
⎪⎪⎩

(r1
a−→E r2) · α((r2, n2) · T )

�a or �a-rule
is applied to n1

α((r2, n2) · T ) otherwise.

A formula is prime if whenever it logically implies a disjunction then it also
implies one of the disjuncts. As we show in [3], the proof system is sound and
complete for all formulas with only prime subformulas. An example proof is
given in [19].
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6 Conclusion

In this paper we investigate a state space representation for open systems spec-
ified as open process terms with behavioural assumptions written in the modal
μ-calculus. This representation can serve both as a graphical specification formal-
ism and as a basis for verification, supporting state space exploration based tech-
niques and state visualization for interactive methods. We present a two-phase
construction of such a representation from an open term with assumptions, and
show it sound for terms without dynamic process creation and complete for sys-
tems with a single underspecified component. Finally, we adapt an existing proof
system for the task of proving behavioural properties of open systems based on
the given state space representation. The relative simplicity of the proof system
and its use is an indication of the adequateness of EMTSs for open system state
space representation.

Future work is required to characterize more precisely the construction and
the μ-calculus fragments for which it is complete, taking into account that the
fragment for specifying component assumptions need not be the same as the
fragment chosen for specifying system properties. In addition to automatic state
space construction, interactive state space exploration will be considered, allow-
ing a wider class of open systems to be handled. Finally, we plan to demonstrate
the utility of the proposed approach by means of tool support and case studies.
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Abstract. Programs written in point-free form express computation
purely in terms of functions. Such programs are especially amenable to
local transformation. In this paper, we describe a process for optimising
the transport of data through point-free programs. This process system-
atically applies local transformations to achieve effective global optimi-
sation. We describe the strategies we employ to ensure this process is
tractable. This process has been implemented as an intermediate stage
of a compiler. The optimiser is shown to be highly effective, producing
code of comparable efficiency to hand-written code.

1 Introduction

Transformation is the key to any program improvement process. By using highly
transformable programming notations we pave the way for the application of
deep and pervasive transformation techniques. Programs written in point-free
form are particularly amenable to transformation[5]. In point-free code all com-
putation is expressed purely in terms of functions. Point-free code contains no
variables to store values generated during program execution. As a consequence,
functions cannot rely on variables as agents to transmit data through the pro-
gram. Instead, the functions themselves are responsible for routing data through
the code. This exposed data-transport maps well to distributed-memory plat-
forms and there have been a number of experiments mapping functions found in
point-free form to such platforms[18, 8, 6].

As well as providing a path to distributed implementation, exposing the trans-
port of data also provides scope for direct optimisation of this transport. This
avenue of research is less well explored. In this paper we outline an automated
process to reduce the volume of data movement through point-free code through
the systematic use of local transformations. We show that this process is highly
effective and describe the techniques we found useful.

1.1 Outline of This Paper

The next section outlines the context in which our optimisation process
takes place. Section 3 defines the broad strategies we applied in all parts of our
optimisation process. Section 4 focuses on one part of the optimisation process -

M. Johnson and V. Vene (Eds.): AMAST 2006, LNCS 4019, pp. 21–35, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the vector optimisation of map functions. Section 5 presents some of our results.
Section 6 outlines related work and we present our conclusions in Sect. 7.

2 Context

The work described in this paper is part of a of a prototype implementation of a
compiler mapping a simple functional language, Adl, to point-free code[2]. The
focus of this paper is the optimisation phase, which reduces the flow of data
through point-free programs. The optimiser was developed in CENTAUR[4],
using rules expressed in Natural Semantics[11]. A simple translator from Adl
to point-free form provides the input to the optimisation process. To provide a
context for this paper, we outline salient features of Adl, point-free code, and
the translation process next.

2.1 Adl

Adl is a small, strict, vector-oriented, functional language. Adl can be described
as point-wise because, like most languages, it supports the use of variables as a
means of storing data. Adl also provides standard operations for iteration - using
while, conditional execution - using if, and scoping - using let. Adl supports
implicit parallelism through second-order data-parallel operations over nestable
single-dimensional arrays, called vectors, including map, reduce and scan. Other
vector operations include a length operator (#), an index operator (!) and an
iota operation to dynamically allocate a contiguous vector of indices. Adl also
supports tuples of arbitrary arity and these are manipulated through pattern-
matching. Adl places no restrictions on the nesting of datatypes and operations.
Recursion is not supported in its initial implementation. Figure 1 shows an Adl
program that adds corresponding elements of two input vectors.

We have built a number of applications in Adl and found it to be a simple
and expressive language to use.

2.2 Point-Free Form

Our dialect of point-free form is derived from a point-free expression of the
theory of concatenate-lists in the Bird-Meertens-Formalism (BMF)[7]. In this
paper, we restrict ourselves to the functions required to express the translation
and optimisation of Adl, omitting point-free equivalents of reduce and scan,
which are beyond the immediate scope of this paper but discussed in[2].

main (a: vof int, b: vof int)
:= let

f x := a!x + b!x
in

map(f,iota #a)
endlet

Fig. 1. An Adl program to add corresponding elements of two vectors
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Table 1. A selection of functions in point-free form

Description Symbol(s) Semantics
Function Composition · (f · g) x = f(g x)
Vector map ∗ f ∗ [x0, . . . , xn−1] = [f x0, . . . , f xn−1]
All applied to for tuples (f1, . . . , fn)◦ (f1, . . . , fn)◦ x = (f1 x, . . . , fn x)
Identity function id id x = x

Tuple access nπi
nπi (a1, . . . , an) = ai

Constant functions K K x = K

Arithmetic operators +, −, ÷, ×, . . . + (x, y) = x + y etc.
Left distribute distl distl (a, [x0, . . . , xn−1]) = [(a, x0), . . . , (a, xn−1)]
Zip zip zip ([x0, . . . , xn−1], [y0, . . . , yn−1]) =

[(x0, y0), . . . , (xn−1, yn−1)]

Value repetition repeat repeat (a, n) = [
n times

a, . . . , a]

Vector transpose transpose
transpose a =

b :
∀(i, j) ∈ indices(a), a(i, j) = b(j, i)∧
∀(i, j) ∈/ indices(a), a(i, j) = b(j, i) =⊥

Vector enumeration iota iota n = [0, 1, . . . , n − 1]
Vector length # # [x0, . . . , xn−1] = n

Vector indexing ! ! ([x0, . . . , xn−1], i) = xi

Vector selection select select (v, [x0, . . . , xn−1]) = [v!x0, . . . , v!xn−1]

Most point-free programs produced by our compiler consist of sequences of
composed functions:

fn · fn−1 · . . . · f1

where input data enters at f1 and flows toward fn at the end of the program.
In the remainder of this paper, we refer to the beginning of the program (f1) as
the upstream end of the program and we refer to the end of the program (fn) as
the downstream end of the program.

Translation. Translation from point-wise Adl to point-free form strips all vari-
able references from Adl code and replaces these with code to transport values
between operations. A detailed description of the translation process is given in
[2]. Similar translation processes have been defined in[5, 16, 13].

The translation process is conservative. It transports every value in the scope
of an operation to the doorstep of that operation. This approach, though simple
and robust, results in large surplus transport of data through translator-code.
This can be seen in the translation of the Adl code from Fig. 1:

(+ · (! · (π1 · π1, π2)◦, ! · (π2 · π1, π2)◦)◦) ∗ distl · (id, iota ·#π1)◦

where the distl operation distributes a copy of both input vectors to each in-
stance of the map function downstream. The aim of the optimiser is to transform
programs in order to reduce this volume of copying. We outline the general strat-
egy of our optimiser next.
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3 Optimisation Strategy

The optimiser works through the application of simple, semantics-preserving,
rules. Taken alone this set of rules is neither confluent or terminating1. More-
over, the large number of steps typically required for optimisation, coupled with
multiple rule and site choices at each step, leads to a case-explosion. To control
these factors we must apply our rules strategically.

Our main strategy is to propagate the optimisation process, on a localised
front2, from the downstream end of the program to the upstream end. The front
moves a step upstream by specialising functions immediately upstream of the
front with respect to the needs of the optimised code immediately downstream.
The front leaves a trail of optimised code in its wake as it steps upstream. The
specialisation that takes place in in each step consists of three phases:

Pre-processing: applies sets of normalisation rules to code at the front. These
rules standardise the form of the code to make the application of key opti-
misation rules easier.

Key-Rule-Application: applies rules that substantially increase efficiency by
either eliminating functions responsible for making redundant copies of data,
or facilitating the removal of such functions further upstream.

Post-processing: re-factors code to eliminate some small inefficiencies intro-
duced by pre-processing. and exposes functions for optimisation further up-
stream.

The phases in each step are applied iteratively until the localised front of opti-
misation reaches the start of the program.

The broad pattern of processing we have just described applies to all optimi-
sation stages of our implementation. A full description of these stages is beyond
the scope of this paper. Instead, we illustrate the process by describing a key
part of optimisation, the vector optimisation of map functions.

4 Vector Optimisation of Map Functions

The map operator is a second-order function that applies a parameter function
to an input vector. In point-free programs, copies of all data required by the pa-
rameter function must be explicitly routed to that function. Vector optimisation
of map functions reduces the amount of data that must be copied by changing
code so that it selectively routes vector data to its destination3. Specifically, we
seek to replace multiple applications of indexing operations on copies of vectors
1 Most rules could be applied in both directions which, trivially, leads to loops. It has

been observed [9] that confluence seems an implausible objective in the context of
program optimisation.

2 In our implementation, we delineate this front by associating function compositions
to make the functions on the front appear as an outermost term.

3 The impact of this optimisation is most strongly felt in a distributed parallel context
where explicit routing of data is required and this routing incurs a cost.
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with a single bulk selection operator to direct data to where it is needed. Two
general rules are used to achive this aim. For the purposes of explanation, we
first introduce two specialised versions of these rules:

(!) ∗ ·distl · (id, R)◦ ⇒ select · (id, R)◦ (1)

(! · (π1 · π1, π2 · π1)◦) ∗ ·distl · (id, R)◦ ⇒
repeat · (! · (π1 · π1, π2 · π1)◦, # · π2)◦ · (id, R)◦

(2)

The code (id, R)◦, though not modified by these rules, is a product of the trans-
lation of all calls to map in Adl, and provides important context for later discus-
sions. The code R can take various forms but, given an input value, a, always
generates some vector of values [x0, . . . , xn−1].

Rule 1, above, fuses the vector indexing function and a corresponding distl
function into a select. If we factor out (id, R)◦ from both sides, the equivalence
underlying rule 1 can be informally stated:

(!) ∗ ·distl (a, [x0, . . . , xn−1]) =
select (a, [x0, . . . , xn−1]) =

[a!x0, . . . , a!xn−1]

The important difference between the two sides is that distl creates the, often
large, intermediate structure: [(a, x0), . . . , (a, xn−1)] whereas select avoids this.

Rule 2 applies where the code that carries out the the indexing (underlined)
accesses only the first element in each of the tuples in the vector produced by
distl4. Again, factoring out (id, R)◦, the equivalence underlying rule 2 can be
informally stated:

(! · (π1 · π1, π2 · π1)◦) ∗ ·distl ((a, x), [y0, . . . , yn−1]) =
repeat · (! · (π1 · π1, π2 · π1)◦, # · π2)◦ ((a, x), [y0, . . . , yn−1]) =

[a!x, . . . , a!x]

where # [a!x, . . . , a!x] = # [y0, . . . , yn−1] = n. It should be noted that while
rule 2 reduces the size of intermediate structures, it also moves the indexing
function further upstream where it can be accessed by subsequent optimisation
steps.

We emphasise that rules 1 and 2 are specialisations of corresponding, more
general, rules in our vector optimiser implementation. We present these rules
shortly, but first we describe the pre-processing steps that allow such rules to be
applied effectively.

4.1 Pre-processing

The pre-processing of code for vector optimisation of map functions consists of
three main stages:

4 We know this because both π1 · π1 and π2 · π1 first execute π1 which accesses the
first element of a tuple.
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1. Compaction: composed functions are coalesced to help reveal true data
dependencies and to bring functions of interest as far upstream as possible.

2. Isolation: functions are isolated from each other to allow them to be
processed individually.

3. Reorientation: transpose functions are added, where necessary, to reorient
the vectors to aid further processing.

We describe each of these stages in turn.

Compaction. Compaction transforms code to minimise the number of com-
posed functions between functions of interest, in this case, indexing functions
and the code further upstream. When compaction is complete, index functions
are “on the surface” and exposed for further processing. As an example - prior
to compaction, the code:

(!.(π2, π1)◦ · (π2, π1)◦) ∗ ·distl · (id, R)◦

is not amenable to immediate optimisation because the contents of the map
function, underlined, is recognisable to neither rule 1 or 2. However, after com-
pacting: (π2, π1)◦ · (π2, π1) to (π1, π2)◦ the code takes the form:

(! · (π1, π2)◦) ∗ ·distl · (id, R)◦

and rule 1 can be applied after eliminating the redundant identity (π1, π2)◦.

Isolation. Often, the combination of functions in code confounds the matching
of optimisation rules. For example the code:

(+ · (! · (π1 · π1, π2)◦, ! · (π1 · π1, π2 · π1)◦)◦) ∗ ·distl · (id, R)◦

matches neither rule 1 or 2. However, if the indexing components are isolated
from each other to produce the equivalent code:

(+) ∗ ·zip · ( (! · (π1 · π1, π2)◦) ∗ ·distl · (id, R)◦,
(! · (π1 · π1, π2 · π1)◦) ∗ ·distl · (id, R)◦)◦

to which rule 2 can be applied immediately, and to which a more general form
of rule 1 can be applied.

Reorientation. In code where indexing functions are nested it is sometimes
the case that the dimensions of the input vector are accessed in an order that
defeats immediate optimisation. For example, it is not instantly clear how to
optimise:

(! · (! · (π1 · π1, π2)◦, π1 · π2)◦) ∗ ·distl · (id, R)◦

However, if we transpose the vector we can switch the functions used to create
the indices giving:

(! · (! · (transpose · π1 · π1, π2 · π1)◦, π2)◦) ∗ ·distl · (id, R)◦

which almost matches the specialised rule 1 and actually does match the corre-
sponding rule (rule 3) described next.
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4.2 Key-Rule Application

The key vector optimisation rules rules are shown in Fig. 2. Rules 3 and 4
correspond to the archetype rules 1 and 2 respectively.

Select introduction

Not In oexp(f1, π2)
In oexp(f2, π2)
Opt(f2 ⇒ f ′

2)
(! · (f1, f2)◦) ∗ ·distl · (id, R)◦ ⇒ select · (f1, f

′
2)◦ · (id, R)◦ (3)

Repeat introduction

Not In oexp(f1, π2)
Not In oexp(f2, π2)

(! · (f1, f2)◦) ∗ ·distl · (id, R)◦ ⇒ repeat · (! · (f1, f2)◦, # · π2)◦ · (id, R)◦ (4)

Fig. 2. Two key rules of the vector optimiser

Rules 3 and 4 are expressed in Natural Semantics. The parts above the line
in each rule are premises that must be true in order to apply the transformation
specified below the line. These rules capture a wider variety of code than their
respective archetypes and are thus more useful in an actual implementation.

Both rules hinge on calls to the predicates In oexp and Not In oexp which test
for the presence, and absence, respectively, of π2 as a most-upstream function
in f1 and f2. The presence of a π2 function as the most upstream functions
indicates a reference to the output value of R.

During the application of rules 3 and 4, the fate of the f2 function in each
rule differs. In rule 3, the truth of In oexp(f2, π2) implies that f2 references R.
This referencing means that at least some code in f2 cannot be carried upstream
of R for further processing. In light of this constraint, the recursive call to the
vector optimiser, Opt(f2 ⇒ f ′

2), is made to exploit a last opportunity to, locally,
optimise f2 before the process moves upstream. In rule 4, f2 does not reference
the output of R and thus can be carried upstream of R for further processing.

On a related note, some thought about the premises of both rules reveals that
code such as:

(! · (! · (π1, π2)◦, π2)◦) ∗ ·distl · (id, R)◦

will match neither rule 3 or 4. In these cases we apply a default rule, not shown
here, leaves outer index function intact. The post-processing phase is then left to
salvage what it can from the code that generates its parameters for optimisation
upstream.

4.3 Post-processing

After the application of the key rules in the last section, code is often in no fit
state for immediate processing further upstream. It is the task of post-processing
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to compact and combine optimisable code fragments to prepare them for the
next optimisation step. As an example of compaction, after applying rule 4 to
the code:

(! · (π1 · π1, π2 · π1)◦) ∗ ·distl · (id, R)◦

we have:
repeat · (! · (π1 · π1, π2 · π1)◦, # · π2)◦ · (id, R)◦

where the functions of interest: ! ·(π1 ·π1, π2 ·π1)◦, and # ·π2 are not in the most-
upstream section of code, ready for further processing. Post-processing compacts
these functions into (id, R)◦ producing the, more accessible, code:

repeat · (! · (π1, π2)◦, # ·R)◦

As an example of combination, the application of rules 3 and 4, plus com-
paction, to the code:

(+) ∗ ·zip · ( ((! · (π1 · π1, π2 · π1)◦) ∗ ·distl · (id, R)◦,
! · (π1 · π1, π2)◦) ∗ ·distl · (id, R)◦)◦

produces:
(+) ∗ ·zip · ( repeat · (! · (π1, π2)◦, # · R)◦,

select · (π1, R)◦)◦)◦

Subsequently, further post-processing combines the two zipped sections of code
to produce the more easily processed:

(+) ∗ ·distl · (! · (π1, π2)◦, select · (π1, R)◦)◦

Note that the re-introduced distl function now transports just the required values
to downstream code rather than broadcasting copies of whole vectors.

This concludes our description of the vector optimisation of map. The code
resulting from vector optimisation has a significantly reduced flow of surplus vec-
tor elements. However, surplus flows of other values remain. Our implementation
reduces these flows during, much-simpler, subsequent passes of optimisation. A
discussion of these other passes is beyond the scope of this paper but their effects
are evident in the performance of code produced by the optimiser in its entirety.
We examine this performance next.

5 Results

We now examine the impact of the optimisation process on the performance of
point-free program code. After this, we briefly discuss the influence that point-
free form has on the design of the optimiser.

5.1 Performance Model

To measure the effect of data movement optimisation we created an instrumented
model for measuring execution time and space consumption on point-free code.
To keep the design of the model simple and consistent we implemented the
following basic strategy for memory allocation and deallocation:
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– memory for each data element is allocated just prior to when it is needed.
– memory for each data element is de-allocated just after its last use.

Our model assigned unit costs to all scalar operations and unit costs to allocating
and to copying scalars. Vectors and tuples were treated as collections of scalars.

main (a: vof vof int, b: vof vof int)
:= let

f x :=
let

g y := a!x!y + b!x!y
in

map(g,iota #(a!x))
endlet

in
map(f,iota (# a))

endlet
(a)

( (+ · (! · (! · (π1 · π1 · π1, π2 · π1)◦, π2)◦,
! · (! · (π2 · π1 · π1, π2 · π1)◦, π2)◦)◦) ∗ ·

distl · (id, iota · #·! · (π1 · π1, π2)◦)◦ · id) ∗ ·
distl · (id, iota · # · π1)◦ · id

(b)

((+) ∗ ·zip
·(select · (3π1,

3 π2)◦, select · (3π3,
3 π2)◦)◦·

(π1 · π1, iota · π2, π2 · π1)◦) ∗ ·
zip · ( ((π2, π1)◦) ∗ ·zip·

(select · (3π1,
3 π2)◦, select · (3π3,

3 π2)◦)◦,
(#) ∗ ·select · (3π3,

3 π2)◦)◦·
(π1, iota · # · π2, π2)◦ · (π2, π1)◦

(c)

( (+) ∗ ·zip·
(select · (π1 · π1, π2)◦

select · (π2 · π1, π2)◦)◦·
(id, iota · # · π1)◦) ∗ ·

zip·
(select · (π1 · π1, π2)◦

select · (π2 · π1, π2)◦)◦·
(id, iota · # · π1)◦

(d)

Fig. 3. Source code - part (a), translator code - part (b), optimiser code - part (c), and
hand-crafted code - part(d) for map map addpairs.Adl



30 B. Alexander and A. Wendelborn

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0  1000  2000  3000  4000  5000  6000  7000

sp
ac

e 
(w

or
ds

)

time (in scalar operations)

translator
optimised

hand-coded

Fig. 4. Performance plots for map map addpair applied to the pair of ragged vectors:
([[1], [2, 3, 4], [5, 6], [], [7, 8, 9, 10]], [[1], [2, 3, 4], [5, 6], [], [7, 8, 9, 10]])

It must be noted that, when mapping point free code to imperative sequential
code there are optimisations that could be applied that our model doesn’t reflect.
However, in a distributed context, we have found that high data-transport costs
in this model map to high communications costs[1].

5.2 Experiments

We ran the translator and then the optimiser over a series of Adl programs
and used an implementation of the model above to compare the performance of
translator and optimiser code. As a benchmark, we hand-coded efficient solutions
in point-free form and ran these against the model too. The results of two of
these experiments are presented next.

Adding Corresponding Elements of Nested Vectors. The source code
for map map addpairs.Adl is shown in Fig. 3(a). This program uses a nested
map operation to add corresponding elements of two nested input vectors. The
translator code, the optimiser code and the handed-coded point-free version are
shown in parts (b), (c) and (d) respectively. The translator code distributes large
amounts of data to the inner map function to be accessed by index functions. The
optimiser code in part (c) has replaced all of the indexing operations by select
operations. The hand-coded version in part (d) has the same basic structure as
the code in part (c) but forms fewer intermediate tuples.

The performance of the three versions of point-free code, applied to a pair
of nested input vectors, is shown in Fig. 4. The translator code fares the worst
due to the cost of distributing aggregate values. The optimiser code exhibits
substantially better performance. The hand optimised version performs even
better, with a similar pattern of data allocation on a slightly smaller scale. Close
inspection of the code reveals that the optimiser has been more aggressive than
necessary in moving the # (length) function out of the inner-map function. This
resulted in extra code to transmit the output of the # that has now been moved
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main a: vof int :=
let
stencil x

:= a!x + a!(x-1) + a!(x+1);
addone x := x + 1;
element_index

:= map(addone,iota ((# a)-2))
in
map (stencil, element_index)

endlet

(a)

(+ · (+ · ( ! · (π1 · π1, π2)◦,
! · (π1 · π1, − · (π2, 1)◦)◦)◦,

! · (π1 · π1, + · (π2, 1)◦)◦)◦) ∗ ·
distl · (id, π2)◦ · id·
(id, (+ · (π2, 1)◦) ∗ distl · (id, iota · − · (# · id, 2)◦)◦)◦

(b)

(+ · (+ · π1, π2)◦) ∗ ·zip·
(zip·
( select,
select · (π1, (−) ∗ ·zip·

(id, repeat · (1, #)◦)◦ · π2)◦)◦,
select · (π1, (+) ∗ ·zip · (id, repeat · (1, #)◦)◦ · π2)◦)◦·
(id, (+ · (id, 1)◦) ∗ ·iota · − · (#, 2)◦)◦

(c)

(+ · (π1 · π1, + · (π2 · π1, π2)◦)◦) ∗ ·
zip · (zip · (π1 · π1, π2 · π1)◦, π2)◦·
(( select,

select · (π1, (+ · (id, 1)◦) ∗ ·π2)◦)◦,
select · (π1, (− · (id, 1)◦) ∗ ·π2)◦)◦·
(id, (+ · (id, 1)◦) ∗ ·iota · − · (#, 2)◦)◦

(d)

Fig. 5. Source code - part (a), translator code - part (b), optimiser code - part (c), and
hand-crafted code - part(d) for finite diff.Adl

upstream. The movement wasn’t warranted in this case because the input vector
to this invocation of # had to be transmitted to the inner map function anyway.
This result indicates that there is scope for tempering the aggression of the
vector optimiser in certain cases.

A Simple Stencil Operation. The source code for finite diff.Adl is shown
in Fig. 3(a). This program applies a very simple stencil operation to a one-



32 B. Alexander and A. Wendelborn

 0

 50

 100

 150

 200

 250

 300

 350

 0  500  1000  1500  2000  2500  3000

sp
ac

e 
(w

or
ds

)

time (in scalar operations)

translator
optimised

hand-coded

Fig. 6. Performance plots for finite diff applied to a short one-dimensional vector

dimensional vector. It is a good example of the use of multiple indexing opera-
tions into a single vector and the use of arithmetic operators on vector indices.
The translator code, the optimiser code and the handed-coded point-free ver-
sion are shown in parts (b), (c) and (d) respectively. Again the translator code
distributes surplus data through the distl operations. The optimiser code in part
(c) has removed this distribution. The hand-coded solution in part (d) is similar
to the hand-coded version but avoids the use of repeat.

Figure 6 shows performance of the three versions of point-free code. Again,
the translator code is the worst-performing. The efficiencies of the optimised
and hand-coded versions are very similar with the optimiser code very slightly
ahead on time and space performance. Close inspection of the code shows that
the optimiser code in part (c) has been more thorough in eliminating transport
of tuple elements in downstream parts of the code.

5.3 Point-Free Form and Optimiser Design

The performance of code produced by the optimiser in the experiments presented
here, and in other experiments we have carried out, is encouraging. In addition to
these results we make the following general observations regarding the influence
of point-free form on optimiser design.

First, pre-processing, using normalisation rules, is an essential part of auto-
matically processing point-free form. It is infeasible to write enough rules to
match code as-is, so code needs to be processed to match the rules. We applied,
and reused, normalisation rules quite frequently and in a variety of circumstances
to maximise the effect of other transformation rules.

Second, it pays to have interfaces. If there is a mismatch between the output
of one transformation component and the expected input of another, the cause
of the resulting error can be difficult to find. The use of interfaces, even on an in-
formal, ad-hoc, basis makes matching, and constructing compilation components
much less error-prone.
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Last, it is difficult to write intelligent rules. It is not easy to trace dependencies
through, and then alter, at a distance, point-free code. It is easier to propagate
dependencies by local transformations to the code itself.

6 Related Work

There is a large body of work exploring program transformation in functional
notations. [17] summarises many of the important issues that arise during trans-
formation. The use and transformation of point-free programs was espoused in
[3]. A broad range of rules and techniques applicable to both point-free and
point-wise programs were developed with Bird-Meertens Formalism[7] we used
a number of the algebraic identities developed in this work in our optimiser.

The idea of making programs more efficient by reducing the intermediate
data produced is strongly related to concept of program fusion. Automated
systems have been developed to perform fusion[14, 10] in point-wise recursive
definitions. Our work, while using some of the rules derived by research into
fusion, is more specialised in its purpose. However, there remains broad scope
for further applications of techniques from the work above in refinements of our
optimiser.

Point-free notation has been used in a few experiments and implementations
including FP*[21] and EL*[16]. Some early experiments with transforming point-
free code are described in[12]. More recently a complete translation process from
recursive functions in Haskell to point-free form has been defined[5]. However,
none of these implementations perform data movement optimisation to the ex-
tent of the implementation described here5.

7 Conclusions and Future Work

We have described an optimisation process to reduce data movement through
point-free code. We have shown that this process is effective in significantly re-
ducing the flow of data through such programs. This process is incremental with
the program itself serving as the sole repository of the state of the transformation
process.

We envisage three major improvements to the implementation as defined so
far. First, the system could be made more extensible by the formal definition of
syntax interfaces for transformation components as in[19]. Second, the volume of
transformation rules may be significantly reduced by separating rule application
strategies from the rewrite rules themselves[20]. Last, an efficient mapping of
point free code to imperative code on sequential architectures needs to be defined,
work toward this goal is underway[15].

5 FP* performs some optimisation as code is being mapped to an imperative language
but explicit data transfer information, useful for mapping to a distributed machine,
is lost in the process.
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To conclude, optimisation in point free form is a highly effective process that
requires different strategies to more traditional approaches. Like all optimisation,
this process is open-ended and much interesting work remains to be done.
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Abstract. This paper presents a syntax-directed non-uniform static
analysis of the stochastic π-calculus to safely approximate the amount of
time required before name substitutions occur in a process. Name substi-
tutions form the basis for defining security properties, like information
leakage. The presence of the quantitative and qualitative information
in the results of the analysis allows us to reason about the speed at
which sensitive information is leaked in a computing environment with
malicious mobile code. We demonstrate the applicability of the analysis
through a simple example of firewall breaches.

1 Introduction

Measuring the rate of propagation of malicious and intrusive mobile code is a key
factor in preventing and reducing the harmful effects of such code particularly,
given that over the past few years, the rate of propagation of viruses and worms
have increased dramatically. In one of CERT’s incident reports [1], it mentions
that “The speed at which viruses are spreading is increasing . . .Beginning with
the Code Red worm (CA-2001-19, CA-2001-23) in 2001 up through the Slammer
worm (CA-2003-04) earlier this year [2003], we have seen worm propagation
times drop from hours to minutes”. In the case of the Sapphire/Slammer worm,
the main novelty of the worm was its speed of infection. According to [2], the
worm “achieved its full scanning rate (over 55 million scans per second) after
approximately three minutes”. Clearly, the moral behind such and other examples
is that the earlier the malicious code is discovered the higher the possibility of
protecting against its harmful effects.

Formal models of mobility, in particular message-passing process algebra such
as the π-calculus [3] and the ambient calculus [4], provide an attractive basis for
reasoning about qualitative and quantitative features of mobile systems due to
their inherent expressive power and simplicity. In fact, there have been sev-
eral extensions of these models targeted towards quantitative features of mobile
systems, for example stochasticity [5, 6, 7], probability [8], semiring-based cost
[9, 10, 11] and time [12]. Nonetheless, most of these models only provide pure
quantitative reasoning; they do not state, for example, how the security of mo-
bile systems is affected by changes in the quantitative features of such systems.

M. Johnson and V. Vene (Eds.): AMAST 2006, LNCS 4019, pp. 36–50, 2006.
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The motivation for the work presented in this paper is to construct a static
analysis that provides approximate reasoning about the speed of information
leaks in processes modelled by the stochastic π-calculus [6]. More specifically,
we are interested in the amount of time, starting from the initial state of the
system, before a particular communication takes place. Such communications
are characterised by name substitutions in message-passing calculi and have
significant security implications. For the sake of brevity, we only deal with simple
properties like privacy breaches resulting from high-level names substituting low-
level input parameters. Other properties like authenticity and denial of service
may also be incorporated in the future.

The work presented here stems from previous works dealing with the static
analysis of mobile processes. Name substitution-based security properties were
defined for the π-calculus in [13] and for a semiring-based extension of the π-
calculus in [9]. Aside from these works, there are a few other related works. In
[14], guessing attacks in security protocols are modelled in an extension of the
π-calculus which adopts a computational security model with random sampling
of new names. Also some works deal with simpler languages without mobility,
for example [15], in which a bisimulation-based confinement property is analysed
for a probabilistic version of CCS [16]. Similar approach is followed in [17] in
defining a non-interference-based information flow property for the probabilis-
tic concurrent constraint programming language [18]. Other frameworks include
PEPA [19] and EMPA [20], several analysis tools for which have been defined.
In general, frameworks like PEPA and EMPA do not cater for mobility aspects
like fresh name creation and message-passing.

The structure of the paper is as follows. In Section 2, we review the syntax of
the language of stochastic π-calculus. In Section 3, we define a domain-theoretic
model of processes and define a syntax-directed semantics of the language. In
Section 4, we extend the standard semantics to be able to capture name substi-
tutions and the elapsed time from the initial state of the process. In Section 5,
we introduce a couple of abstraction functions to limit the number of bound
names generated in the interpretation and to produce an abstract view of time.
In Section 6, we define the timed version of the information leakage property
and finally, in Section 7, we demonstrate the applicability of the analysis in a
simple example of firewall breaches.

2 The Stochastic π-Calculus

We recall here the syntax of the stochastic π-calculus.

Definition 1 (Stochastic π-calculus). Let N be the infinite countable set of
names, {a, b, c, x, y, z . . .}, then processes, P, Q, R, . . . ∈ P, are built as follows:

P ::= 0 | (π, r).P | (νx)P | [x = y]P | (P | Q) | P + Q | !P

Where r ∈ R+ is a positive real number and π is defined as π ::= x(y) | x〈y〉.
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The syntax is quite similar to the standard π-calculus syntax [3], with which
we assume the reader to be familiar with, along with the notions of free/bound
names and name substitutions. The only syntactic difference is in (π, r).P , which
is a process capable of firing action, π, with rate, r. These actions are either input,
x(y), or output, x〈y〉. From now on, we only deal with normal processes.

Definition 2 (Normal Processes). A process, P , is said to be normal if it
has no occurrences of homonymous bound names1 and bn(P ) ∩ fn(P ) = {}.

3 A Domain-Theoretic Model

We follow the approach of [21, 13] (which was originally inspired by [22]) in defin-
ing a domain-theoretic model of the stochastic π-calculus. We start by defining
the following predomain equations, which describe the basic actions of processes:

Pi = 1 + P(Tau + In + Out) (1)
Tau = R+ × Pi⊥ (2)

In = N ×R+ × (N → Pi⊥) (3)
Out = N ×R+ × (N × Pi⊥ + N → Pi⊥) (4)

These equations are explained as follows: Pi is the predomain of processes con-
structed from Plotkin’s powerdomain operation [23] applied to the sum of the
predomains Tau, In and Out and adjoined to the single-element domain, 1, as
in [24, Def. 3.4] to express terminated or deadlocked processes. The domain of
processes is formed by lifting Pi to Pi⊥, where ⊥Pi⊥ represents the divergent or
undefined process. The predomain, Tau, of silent actions is defined as a pair: the
first element, R+, represents the rate of synchronisation (since silent actions in
our case occur solely as a result of synchronisations) whereas the second element,
Pi⊥, represents the residual process. The predomain, In, of input actions consists
of a triple: the first two elements, N × R+, are the channel of communication
and the execution rate whereas the third element is a function, N → Pi⊥, which
takes a name and yields the residual process. Finally, the predomain, Out, of free
and bound output actions consists of a triple: the first two elements, N × R+,
are the channel and the execution rate whereas the third element represents the
sum of free, N × Pi⊥, and bound, N → Pi⊥, outputs.

Finding a solution to equations (1)–(4) consists in finding a definition of the
concrete elements of each of the (pre)domains involved. One such solution is
shown in Figure 1, where K is the set underlying any (pre)domain. The defini-
tion of N is trivial: N is a flat predomain, therefore its structure is similar to N .
The same applies to R+. In fact, in what follows, we abuse the set membership
operator and write x ∈ N and r ∈ R+ to mean x ∈ K(N) and r ∈ K(R+), re-
spectively. On the other hand, Pi⊥ is defined as a multiset of semantic elements,
where {|⊥|} is the bottom element representing the undefined process and ∅ is
1 This implies that no two bound names are the same, a property that can be achieved

by applying α-conversion intintially.
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Elements of N :
x ∈ N ⇒ x ∈ K(N)

Elements of R+ :
x ∈ R+ ⇒ x ∈ K(R+)

Elements of Pi⊥ :
{|⊥|} ∈ K(Pi⊥)
∅ ∈ K(Pi⊥)
p, q ∈ K(Pi⊥) ⇒ p 
 q ∈ K(Pi⊥)
p ∈ K(Pi⊥), r ∈ R+ ⇒ {|tau(r, p)|} ∈ K(Pi⊥)
x, y ∈ K(N), p ∈ K(Pi⊥), r ∈ R+ ⇒ {|in(x, r, λy.p)|} ∈ K(Pi⊥)
x, y ∈ K(N), p ∈ K(Pi⊥), r ∈ R+ ⇒ {|out(x, r, y, p)|} ∈ K(Pi⊥)
x, y ∈ K(N), p ∈ K(Pi⊥), r ∈ R+ ⇒ {|out(x, r, λy.p)|} ∈ K(Pi⊥)
x ∈ K(N), p ∈ K(Pi⊥) ⇒ new(x, p) ∈ K(Pi⊥)

Definition of new :
new(x, ∅) = ∅
new(x, {|⊥|}) = {|⊥|}
new(x, {|in(y, r, λz.p)|}) =

∅, if x = y
{|in(y, r, λz.new (x, p))|}, otherwise

new(x, {|out(y, r, z, p)|}) =
∅, if x = y
{|out(y, r, λz.p)|}, if x = z �= y
{|out(y, r, z,new (x, p))|}, otherwise

new(x, {|out(y, r, λz.p)|}) =
∅, if x = y
{|out(y, r, λz.new(x, p))|}, otherwise

new(x, {|tau(r, p)|}) = {|tau(r,new (x, p))|}
new(x, (p1 
 p2)) = new (x, p1) 
 new(x, p2)

Fig. 1. Elements of N , R+ and Pi⊥

the empty multiset representing terminated or deadlocked processes2. Other el-
ements are defined as follows: � is the standard multiset union of two elements.
The singleton map, {| |}, takes tuples representing input, output and silent ac-
tions and creates a singleton multiset of each tuple. These tuples are in(x, r, λy.p)
(input action), out(x, r, y, p) (free output action), out(x, r, λy.p) (bound output
action) and tau(r, p) (silent action). In these tuples, x is the channel of commu-
nication, y is the message or input parameter, r is the rate of execution (syn-
chronisation) and p is the residual process. The use of λ-abstraction to model
the binding effect in input and bound output actions implies that the actual
residual process is obtained only once its function is instantiated.

The effects of restriction are modelled by the new operator. In general, new
captures deadlocked situations arising from the attempt to communicate over
restricted non-extruded channels. It also turns a free output into a bound output
once a restricted message is directly sent over a channel (scope extrusion). In

2 Following [22], we take {|⊥|} � ∅ and ∅ is incomparable otherwise.
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(S1) S([0]) ρ φS = ∅
(S2) S([(x(y), r).P ]) ρ φS = {|in(φS(x), r, λy.R([{|P |} 
 ρ]) φS)|}
(S3) S([(x〈y〉, r).P ]) ρ φS = {|out(φS(x), r, φS(y),R([{|P |} 
 ρ]) φS)|} 


(
(x′(z),rz).P ′∈ρ: φS(x)=φS(x′)

{|tau(rsyn, R([{|P |} 
 ρ[P ′/x′(z).P ′]]) φS [z �→ φS(y)])|})
where, rsyn = (r × (r +

(x〈y〉,ry).P∈ρ

ry)−1) × (r′ × (
(x′(z),rz).P∈ρ

rz)−1)×
min((

(x〈y〉,ry).P∈ρ

ry + r),
(x′(z),rz).P∈ρ

rz)

(S4) S([(νx)P ]) ρ φS = new (x,R([{|P |} 
 ρ]) φS)

(S5) S([[x = y]P ]) ρ φS =
R([{|P |} 
 ρ]) φS , if φS(x) = φS(y)
∅, otherwise

(S6) S([P | Q]) ρ φS = R([{|P |} 
 {|Q|} 
 ρ]) φS
(S7) S([P + Q]) ρ φS = R([{|P |} 
 ρ]) φS 
 R([{|Q|} 
 ρ]) φS
(S8) S([!P ]) ρ φS = snd(fix F (0, {|⊥|}))

where, F = λfλ(j, p).f (if p = R([(
j

i=0
{|(P )σ|}) 
 ρ]) φS

then (j, p)

else ((j + 1), (R([(
j

i=0
{|(P )σ|}) 
 ρ]) φS)))

and, σ = [bn i(P )/bn(P )], bn i(P ) = {xi | x ∈ bn(P )}
(R0) R([ρ]) φS =

P∈ρ

S([P ]) (ρ\{|P |}) φS

Fig. 2. The syntax-directed semantics of the stochastic π-calculus

all other cases, restriction has no effect and it is simply passed to the residue or
distributed over multiset union.

Using the semantic elements of Figure 1, it is possible to give a syntax-directed
semantics for the stochastic π-calculus as a function, S([P ]) ρ φS ∈ Pi⊥, defined
over the syntactic structure of P , as shown in Figure 2. In this semantics there
are two environments, ρ : ℘(P), which is a multiset of all the processes in parallel
with the current process being interpreted where rule (R0) is used to interpret
the contents of this multiset, and φS : N → N , which maps names to their
substitutions, where initially, ∀x ∈ N : φS0(x) = x. The rules are described as
follows. In rule (S1), a null process is interpreted as the empty multiset. In rule
(S2), input actions are interpreted as a singleton multiset of the corresponding
in semantic tuple. Note that no communications are considered in this rule and
are simply interpreted in the following rule, (S3), for the case of output actions.
In this rule, the meaning of a process guarded by an output action is interpreted
by either the corresponding out tuple, which is necessary to express the case
of no communications, and tau elements to express the case of communications
with matching input actions in ρ, where φS is updated accordingly. In the lat-
ter case, the rate of synchronisation, rsyn, is computed according to [6, Eq. 1]
but adapted to suit the structure of the ρ multiset. In rule (S4), restriction is
interpreted directly using the new operator and in rule (S5), name matching
is resolved according to the equality of φS-values of the matched names. Rule
(S6) interprets parallel composition by adding the parallel processes to the rest



Measuring the Speed of Information Leakage in Mobile Processes 41

in ρ. On the other hand, non-deterministic choice is interpreted in rule (S7)
as the standard multiset union of the individual meaning of each process. Rule
(S8) deals with the interpretation of replication in terms of the higher-order
non-recursive functional, F , whose fixed point meaning, fix F = Ffix F , is a
pair of elements, (j, p). The meaning of the replicated process is then taken as p.
The rule also attaches a subscript label to the bound names of each copy of the
replicated process signifying the number of that copy. This is needed in order to
maintain the normality of processes. It is interesting to mention that since the
semantic domain, Pi⊥, has an infinite size, then the fixed point calculation is
not guaranteed to terminate.

4 Extended Semantics

The semantics of the previous section was designed in order to capture the
standard operational meaning of a process as an element of the domain, Pi⊥. In
this section, we extend the semantics to capture the time meaning of each name
substitution. More specifically, we capture the quantity, t, used to compute the
time duration a substitution induces according to Gillespie’s algorithm [25]:

t× ln(n−1)

where n is some random number ranged over [0, 1]. This quantity t, which we
call the exponential time factor, in fact turns out to be equal to r−1

syn as defined
in the standard semantics of the previous section (see [26, Def. 12]).

First, we define the special environment, φE : N × N → R+
⊥, such that

φE(x/y) = t means that the name substitution, x/y, occurred at some time,
t, from the beginning of the interpretation of the process. This time is in fact
the accumulation of the exponential time factors encountered through each flow
of control, over each side of �. For example, in the process:

(x〈a〉, r1).(x〈b〉, r2).P | (x(y), r′1).(x(w), r′2).Q

and assuming that the current time is t0, the first synchronisation of x and x
has a rate of rsyn1 (as a parameter of r1 and r′1) and the second has a rate rsyn2
(as a parameter of r2 and r′2), then the name substitutions a/y and b/w will
occur at times (t0 + (r−1

syn1)) × ln(n−1) and (t0 + (r−1
syn1) + (r−1

syn2)) × ln(n−1),
parameterised by n, a random number3. In what follows, we ignore the random
element, ln(n−1), and capture only the accumulated exponential time factors.

Initially, the φE environment is defined such that φE0(x/y) = 0 if x = y,
otherwise φE0(x/y) = ⊥. In fact, since the extended semantics is a precise se-
mantics and we only deal with normal processes, then each input parameter can
be substituted with one name at most in the domain of φE , i.e. ∀x, y, z ∈ N :

3 In fact, n is a simplification of the random numbers, n1, n2 and n3, since the actual
Gillespie’s algorithm would have computed times (t × ln(n−1

1 )) + (r−1
syn1 × ln(n−1

2 ))
and (t × ln(n−1

1 )) + (r−1
syn1 × ln(n−1

2 )) + (r−1
syn2 × ln(n−1

3 )).
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x/z, y/z ∈ dom(φE )⇒ x = y. The semantic domain of φE environments is then
defined as D⊥ = N ×N → R+

⊥ with the following ordering:

∀φE1, φE2 ∈ D⊥ : φE1 �D⊥ φE2 ⇔ dom(φE1) ⊆ dom(φE2)

where the bottom element is, ⊥D⊥ = φE0. We also define the union of φE envi-
ronments as follows:

∀x, y ∈ N, φE1, φE2 ∈ D⊥ : (φE1 ∪φ φE2)(x/y) =

⎧⎨
⎩

φE1(x/y), if x/y ∈ dom(φE1)
φE2(x/y), if x/y ∈ dom(φE2)
⊥, otherwise

Using D⊥, we can define an extended semantics for the stochastic π-calculus
through the semantic function, E([P ]) ρ t φE ∈ Pi⊥ × D⊥, defined by the
rules of Figure 3, where t is the total time expressed by accumulated expo-
nential time factors resulting from synchronisations in each flow of control. We

(E1) E([0]) ρ t φE = (∅, φE)
(E2) E([(x(y), r).P ]) ρ t φE = ({|in(x′, r, λy.fst(R([{|P |} 
 ρ]) t φE))|}, φE)

where, x′/x ∈ dom(φE)
(E3) E([(x〈y〉, r).P ]) ρ t φE = ({|out(w, r, u, fst(R([{|P |} 
 ρ]) t φE))|} 


(
∀(x′(z),rz).P ′∈ρ,∃x′′: x′′/x′,x′′/x∈dom(φE)

{|tau(rsyn, p′)|})),
(φE ∪φ ( φ

∀(x′(z),r′).P ′∈ρ,∃x′′: x′′/x′,x′′/x∈dom(φE)

φ′
E))

where, w/x ∈ dom(φE), u/y ∈ dom(φE)
(p′, φ′

E) = R([{|P |} 
 ρ[P ′/x′(z).P ′]]) t′ φE [u/z �→ t + r−1
syn]

and rsyn = (r × (r +
(x〈y〉,ry).P∈ρ

ry)−1) × (r′ × (
(x′(z),rz).P∈ρ

rz)−1)×
min((

(x〈y〉,ry).P∈ρ

ry + r),
(x′(z),rz).P∈ρ

rz)

(E4) E([(νx)P ]) ρ t φE = new(x, fst(R([{|P |} 
 ρ]) t φE)), snd(R([{|P |} 
 ρ]) t φE)

(E5) E([[x = y]P ]) ρ t φE =
R([{|P |} 
 ρ]) t φE , if ∃z : z/x, z/y ∈ dom(φE)
(∅, φE), otherwise

(E6) E([P | Q]) ρ t φE = R([{|P |} 
 {|Q|} 
 ρ]) t φE
(E7) E([P + Q]) ρ t φE = (p1 
 p2), (φ1 ∪φ φ2)

where, (p1, φ1) = R([{|P |} 
 ρ]) t φE and (p2, φ2) = R([{|Q|} 
 ρ]) t φE
(E8) E([!P ]) ρ t φE = snd(fix F (0, ({|⊥|}, ⊥D⊥)))

where, F = λfλ(j, e).f (if e = R([(
j

i=0
{|(P )σ|}) 
 ρ]) t φE

then (j, e)

else ((j + 1), (R([(
j

i=0
{|(P )σ|}) 
 ρ]) t φE)))

and, σ = [bn i(P )/bn(P )], bn i(P ) = {xi | x ∈ bn(P )}
(R0) R([ρ]) t φE =

P∈ρ

fst(E([P ]) (ρ\{|P |}) t φE),

φ
P∈ρ

snd(E([P ]) (ρ\{|P |}) t φE)

Fig. 3. The non-standard semantics of the stochastic π-calculus
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explain here a few interesting rules. In rule (E2), and since communications
are only considered in the following rule (E3), the φ′

E environment resulting
from the interpretation of the residual process, P , is neglected because the
input action guarding P cannot be fired in this rule. In rule (E3), communi-
cations are dealt with by introducing the tau element and updating the φE
and time information. The rate of synchronisation, rsyn, is computed exactly
as in the standard semantics of the previous section. On the other hand, the
exponential time factor, r−1

syn, which induces a time delay of (r−1
syn × ln(n−1))

according to Gillespie’s algorithm, is added to the current value, t. The equal-
ity of the names of the synchronising channels is tested by finding a com-
mon name that substitutes both channel names in the domain of φE . Finally,
rule (E8) deals with the case of replication using the subscript labelling of
bound names and a fixed point calculation over the higher-order non-recursive
functional, F . As in the case of the standard semantics, this calculation is
not guaranteed to terminate due to the infinite size of the semantic domain,
Pi⊥ ×D⊥.

In the following theorem, we show that the extended semantics is correct with
respect to the standard semantics of the previous section by proving that the
standard element of the former is equal to the latter and that any name substi-
tutions (excluding their time value) captured in the former are also captured by
the latter.

Theorem 1 (Correctness of the Extended Semantics).
∀P ∈ P , ρ, t, φE , φS , E([P ]) ρ t φE = (p′, φ′

E),S([P ]) ρ φS = p : p = p′ ∧
∃P ′, ρ′, φ′

S : S([P ′]) ρ′ φ′
S ∈ p ∧ (∀x, y ∈ N : x/y ∈ dom(φE )⇒ φ′

S(x) = y)

Proof sketch. The proof is by induction over the rules of both semantics. In
particular, we take care in noting that each time a substitution is recorded in
φE , then the same substitution is recorded in the corresponding φS . �

5 Abstract Semantics

Despite the fact that the extended semantics of the previous section captures
the property of interest, i.e. name substitutions and the exponential time factor
which can be used to determine the point in time in which a substitution takes
place, the semantics is non-computable due to the infinite size of Pi⊥ × D⊥.
Therefore, it is necessary to introduce abstraction functions in order to obtain
a termination result. The abstraction we adopt is based on two ideas: First,
limiting the number of copies each bound name is allowed to have and sec-
ond, considering time as an abstract quantity instead of the infinite time span
of R+. Moreover, we remove elements of Pi⊥ from the abstract meaning of a
process since these are not required anymore in the security properties defined
later.

Before introducing our abstraction, we define the flat predomain of tags, Tag,
ranged over by l, l′. These tags will be used to mark each message of an output
action in the specification. For example, x〈yl〉.z〈yl′〉.u〈al′′ 〉.0. This tagging is
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necessary so that homonymous output messages are distinguished, for example,
the dual occurrence of y as a message above4. We also define the functions:

value of(l) = y

tags of(P ) = {l1, . . . , ln}

where value of : Tag → N gives the name value corresponding to a tag and
tags of : P → ℘(Tag) gives the set of tags used in a process. So, in the above
example, we have that value of(l) = value of(l′) = y and value of(l′′) = a.
Also, tags of(x〈yl〉.z〈yl′〉.u〈al′′〉.0) = {l, l′, l′′}. Now, we define our name and tag
abstraction function.

Definition 3 (Name and Tag Abstraction Function). Define the abstract
function, αk : (N ∪Tag)→ (N 
 ∪ Tag
), as follows:

∀u ∈ (N ∪ Tag) : αk(u) =
{

uk, if u = ui ∧ i > k
u, otherwise

The definition of αk, curried with respect to the positive natural number, k,
ensures that all copies of names and tags beyond k are abstracted to the kth

copy. As a result, the abstract flat predomains, N 
, Tag
, are defined as,

K(N 
) = K(N)\{xi | i > k}
K(Tag
) = K(Tag)\{li | i > k}

In the case where k = 1, the analysis becomes uniform. Otherwise, it is non-
uniform and the choice of k will determine the precision of the results. This
choice is dependent on the properties the analysis is designed for.

Next, we define the notion of abstract time durations as follows.

Definition 4 (Abstract Time Durations). We define abstract time dura-
tions as the set, T 
 = {long,medium, short}, ordered as follows:

short �T � medium �T � long

We also define a function that estimates abstract time durations from concrete
exponential time factors as follows.

Definition 5 (Time Abstraction Function). Given two exponential time
factors, t1 and t2, we define the time abstraction function, βt1,t2 : R+ → T 
, as:

∀t ∈ R+ : βt1,t2(t) =

⎧⎨
⎩

short, if t ≤ t1
medium, if t1 < t ≤ t2
long, if t2 < t

4 Such a distinction was not required in the concrete semantics of the previous sections
since a message was always going to instantiate at most one input parameter. This
is not the case in the abstract semantics.



Measuring the Speed of Information Leakage in Mobile Processes 45

The time abstraction function, βt1,t2 , is parameterised by two times, t1 and t2,
which define the boundaries of short, medium and long time periods.

Based on the predomains N 
, Tag
 and T 
, we can define the abstract environ-
ment, φA : Tag
×N 
 → ℘(T 
)⊥, to denote the fact that a particular substitution
of an abstract name by an abstract tag may occur at any point in abstract time
among a set of such points. Initially, ∀x ∈ N 
, l ∈ Tag
 : φA0(l/x) = {} if
value of(l) = x, otherwise, φA0(l/x) = ⊥. Furthermore, we can define the ab-
stract domain, D


⊥ = Tag
 ×N 
 → ℘(T 
)⊥, with the following ordering:

∀φA1, φA2 ∈ D

⊥ : φA1 �D�

⊥
φA2 ⇔ dom(φA1) ⊆ dom(φA1)

where the bottom element is ⊥D�
⊥

= φA0. We also redefine the union operation
over abstract environments as follows:

∀φA1, φA2 ∈ D

⊥, x ∈ N 
, l ∈ Tag
 : (φA1 ∪φ φA2)(l/x) = φA1(l/x) ∪ φA2(l/x)

Given the abstract domain, D

⊥, we define the abstract semantics of the stochas-

tic π-calculus as an element, A([P ]) ρ t
 φA ∈ D

⊥, inductively over the structure

of processes as shown in Figure 4. The rules of the abstract semantics are ex-
plained as follows. Rules (A1) and (A2) do not change the φA environment since
they do not induce any communications. Instead, communications are dealt with
in rule (A3), where the φA environment is updated with the abstract time value
corresponding to a particular tag/name substitution and then added to the orig-
inal environment representing the no-communications case. Note that since the
semantics is approximate, a substitution may have a set (not just one element)
of abstract time values associated with it. The new time, t′
, resulting from the
synchronisation of the matching input/output channels will be joined to the cur-
rent time using the least upper bound operator. This is justified by the fact that
slower synchronisations have a stronger effect on the overall time in any flow of
control. The rest of the rules are straightforward, except for rule (A8), where
the fixed point calculation, unlike the case of concrete semantics, is guaranteed
to terminated in this semantics, as shown by the following result.

Theorem 2 (Termination of the Abstract Semantics). The calculation of
rule (A8) terminates.

Proof sketch. The proof relies on satisfying two requirements in the abstract
semantics: The first is that the abstract domain is finite, this can be shown from
the definition of D


⊥. The second is that the meaning of a process is monotonic
with respect to increments in the number of copies of P , i.e.

R([(
j⊎

i=0

{|P |}) � ρ]) t
 φA �D�
⊥
R([(

j+1⊎
i=0

{|P |}) � ρ]) t
 φA

This latter property can be proven by showing that the extra copy of P can only
induce more communications, not less. �
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(A1) A([0]) ρ t� φA = φA
(A2) A([(x(y), r).P ]) ρ t� φA = φA
(A3) A([(x〈yl〉, r).P ]) ρ t� φA = φA ∪φ

( φ
∀(x′(z),r′).P ′∈ρ,∃l: l/x′,l/x∈dom(φA)

R([{|P |} 
 ρ[P ′/x′(z).P ′]]) t′� φ′
A

where, φ′
A = φA[αk(l)/αk(z) �→ {t′�} ∪ φA(αk(l)/αk(z))])

t′� = t� � βt1,t2(r
−1
syn)

and rsyn = (r × (r +
(x〈y〉,ry).P∈ρ

ry)−1) × (r′ × (
(x′(z),rz).P∈ρ

rz)−1)×
min((

(x〈y〉,ry).P∈ρ

ry + r),
(x′(z),rz).P∈ρ

rz)

(A4) A([(νx)P ]) ρ t� φA = R([{|P |} 
 ρ]) t� φA

(A5) A([[x = y]P ]) ρ t� φA =
R([{|P |} 
 ρ]) t� φA,

if ∃l : l/αk(x), l/αk(y) ∈ dom(φA)
φA, otherwise

(A6) A([P | Q]) ρ t� φA = R([{|P |} 
 {|Q|} 
 ρ]) t� φA
(A7) A([P + Q]) ρ t� φA = R([{|P |} 
 ρ]) t� φA ∪φ R([{|Q|} 
 ρ]) t� φA
(A8) A([!P ]) ρ t� φA = snd(fix F (0, ⊥

D
�
⊥

))

where, F = λfλ(j, φ).f (if φ = R([(
j

i=0
{|(P )σ|}) 
 ρ]) t� φA

then j, φ

else (j + 1), (R([(
j

i=0
{|(P )σ|}) 
 ρ]) t� φA))

σ = [bni(P )/bn(P )][tags of i(P )/tags of (P )], bn i(P ) = {xi | x ∈ bn(P )}
and tags of i(P ) = {xi | x ∈ tags of (P )}

(R0) R([ρ]) t� φA = φ
P∈ρ

A([P ]) (ρ\{|P |}) t� φA

Fig. 4. The abstract semantics of the stochastic π-calculus

The following safety result states that the abstract semantics always captures, in
an approximate manner, the same information captured in the concrete extended
semantics and therefore, the former is a safe abstraction of the latter.

Theorem 3 (Safety of the Abstract Semantics).
∀P, ρ, φE , φA, k, t1, t2, t, E([P ]) ρ t φE = (p, φ′

E ),A([P ]) ρ βt1,t2(t) φA = φ′
A :

(∃x, y ∈ N : x/y ∈ dom(φE ) ⇒
∃l ∈ Tag
, y ∈ N 
 : l/y
 ∈ dom(φA) ∧ value of(l) = αk(x) ∧ y
 = αk(y) ∧
βt1,t2(φE(x/y)) ∈ φA(l/y))

⇒
(∃x, y ∈ N : x/y ∈ dom(φ′

E ) ⇒
∃l ∈ Tag
, y ∈ N 
 : l/y
 ∈ dom(φ′

A) ∧ value of(l) = αk(x) ∧ y
 = αk(y) ∧
βt1,t2(φ′

E(x/y)) ∈ φ′
A(l/y))

Proof sketch. The proof of the theorem is by induction over the rules of the
abstract semantics and the extended semantics and relies on a lemma showing
that the ∪φ operation preserves a similar safety property. �
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6 Timed Information Leakage

Using the results of the abstract semantics of the previous section, we define in
this section the notion of timed information leakage as a property to measure
how quickly information may be leaked in a system.

6.1 Security Policies

We first define the notion of a security policy, written as ξ, to refer to a classi-
fication of the different data and input parameters using the well-known lattice
structures.

Definition 6 (Security Policy). Assume that S = (SL,�S ,�S ,�S ,�S ,⊥S)
is a finite lattice of security levels ranged over by L,L′ ∈ SL, then a security
policy is a function, ξ : N → S, such that ξ(x) = L means that name x is
classified at security level L.

According to this definition, a security policy assigns to each name in a process
specification the security level of that name. For names occurring as messages,
this level is a reflection of the sensitivity of that message. On the other hand,
for names occurring as input parameters, the level reflects the sensitivity of the
process doing the input.

6.2 Information Leakage

An essential threat that arises once data/input parameters have been classified
in some security policy is the threat of information leakage; namely, a high-level
piece of data may be caught by some low-level input parameter. In our context,
we define the information leakage threat as follows.

Definition 7 (Information Leakage). Given a security policy, ξ, and some
abstract environment, φA, then a name, x, with security level, ξ(x) = Lx, is
leaked to another name, y, with security level, ξ(y) = Ly, if Ly �S Lx and the
following holds true:

∃l
 ∈ Tag
, y
 ∈ N 
, k ∈ N : l
/y
 ∈ dom(φA)∧value of(l
) = αk(x)∧y
 = αk(y)

The property relies on name substitutions captured by a φA environment, which
results from the analysis of some process. We shall write, leaked(x, y, ξ, φA), to
say that the message, x, is leaked to the input parameter, y, given particular
definitions of φA and ξ.

6.3 Timed Information Leakage

The presence of time information in φA allows us to define a timed version of
the information leakage threat, as given in the following definition.
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Definition 8 (Timed Information Leakage). Given a security policy, ξ, and
some abstract environment, φA, the names, x and y, then we say that x is leaked
to y in abstract time, t
, if:

leaked(x, y, ξ, φA) ∧ t
 = �
t∈φA(l�/y�)

t

This definition adds the timed condition (t
 = �
t∈φA(l�/y�)

t) to the information

leakage property. The abstract time, t
, is the shortest time among the times
estimated by φA for the substation, x/y to take place. Taking the shortest time
(or the greatest lower bound of all times) is necessary in order to consider the
worst possible scenario.

7 Example: Firewall Breach

We discuss in this section a simple example to demonstrate the applicability of
the timed information leakage property as defined in the previous section. The
example consists of a Firewall with two secret names of gateways, gate and gate′.
Behind the firewall we have a private LAN containing some sensitive data and
outside the firewall there is a malicious Intruder, which is assumed to be able to
discover any channel’s name, use that name to inject a leak name and finally, use
that name to obtain sensitive date. The Intruder, Firewall and LAN processes
are given the following specifications:

Intruder def= !(obtain(ch), 5000).(ch〈leak〉, 5000).(leak(mine), 5000)
Firewall def= !((gate(x), 7).(pgm〈x〉, 5000) | (gate′(x′), 5000).(pgm′〈x′〉, 5000))
LAN def= !((pgm(y), 5000).(y〈data〉, 5000) | (pgm′(y′), 5000).(y′〈data〉, 5000))

In the first case, assuming that the intruder is only capable of discovering the
first gate’s name, gate, then the definition of the overall system would be:

System def= Intrduer | (νdata)(νgate)(νgate′)(νpgm)(νpgm′)(
Firewall | LAN | (obtain〈gate〉, 5000))

Also, we assume a time abstraction function, β100,500. Performing a uniform ab-
stract interpretation, A([System]) {||} short φA0, we obtain the following fixed
point value for φA:

gate/ch1 �→ {short}, leak/x1 �→ {long}, leak/y1 �→ {long}, data/mine �→ {long}

In the second case, we modify the definition of the system so that now the in-
truder discovers both gateway names, gate and gate′:

System def= Intrduer | (νdata)(νgate)(νgate′)(νpgm)(νpgm′)(
Firewall | LAN | (obtain〈gate〉, 5000) | (obtain〈gate′〉, 5000))
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Then, by re-performing the same abstract interpretation as above, we obtain the
following fixed point value for φA:

gate/ch1 �→ {short}, leak/x1 �→ {long}, leak/y1 �→ {long},
leak/x′

1 �→ {short}, leak/y′
1 �→ {short}, data/mine �→ {long, short}

Assuming that we have a security policy, ξ, such that ξ(leak) �S ξ(data), then
we find according to Definition (8) that in the first definition of our system, the
leakage of data to mine requires a long amount of time due to the fact that the
intruder can only interact with the slow action, gate(x). However, in the second
case, the same leakage now requires only a short amount of time since there
is a faster alternative to gate(x), with which the intruder can interact, namely
gate′(x′). Therefore, the worst case scenario for leaking data to mine will require
a short amount of time (equivalent to long � short).

Acknowledgements. Thanks for the useful comments of the anonymous refer-
ees on this paper. The work was supported by EPSRC.
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Abstract. Motivated by the proliferation and usefulness of Domain
Specific Languages as well as the demand for enriching well established
languages by high level capabilities like pattern matching or invariant
checking, we introduce the Formal Islands framework.

The main idea consists to integrate, in existing programs, formally
defined parts called islands, on which proofs and tests can be meaning-
fully developed. Then, Formal Islands could be safely dissolved into their
hosting language to be transparently integrated in the existing develop-
ment environment.

The paper presents this generic framework and shows that the prop-
erties valid on the Formal Islands are also valid on the corresponding dis-
solved host codes. Formal Islands can be used as a general methodology
to develop new DSLs and we show that language extensions like SQLJ—
embedding SQL capabilities in Java—, or Tom—a Java language exten-
sion allowing for pattern matching and rewriting—are indeed islands.

1 Introduction

At all the levels of our social and scientific organizations, the development of
formal proofs of program properties is recognized as a priority of fundamental
interest. But this faces at least three important difficulties. First is the lack of
formal environments for existing widely used programming languages like Java,
C or ML. Second is the scalability to allow for the proof of properties of large
programs. Third is the fact that on the enormous corpus of active software,
maintenance and adaptation should be conducted without having to rewrite or
deeply transform the existing running code. Therefore we are in need of having
language extensions, formally defined, adaptable to existing widely used pro-
gramming languages and that do not induce dependence on a new language.

To contribute to solve these problems given the above constraints, we propose
the concept of Formal Islands and show how it could be implemented and used.
Indeed, taking the geography metaphor as well as a terminology already used
for island grammars [11], we call Ocean the language of interest, typically C or
Java, and Island the language extension that we would like to define.

As shown in Figure 1, the island cycle of life is composed of 4 phases:

– anchor which relates the grammars and the semantics of the two languages,
– construction which inserts some island code in an ocean program,

M. Johnson and V. Vene (Eds.): AMAST 2006, LNCS 4019, pp. 51–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In pictures

Existing code Anchor Construction Proofs Dissolution
For example
Java ADT Rewrite rules Termination Compilation

Fig. 1. Formal Islands in picture

– proofs or program transformations on islands,
– dissolution of the islands in the ocean language.

The anchoring step consists in defining the grammar and semantics of the
island language and in relating it to the existing ocean one. This step should
in particular take care of the data representation correspondence between the
island and ocean constructions.

The construction phase consists in writing a program in the combined
island and ocean languages. For example, we could consider, as it is al-
ready possible in Tom1, to define functions using matching constructs (of the
form %match pattern -> JavaCode) or using term rewrite rules (of the form
%rule term -> term). What is quite appealing at this level is the possibility to
mix both language constructions to ease either the expressivity or the references
to the existing ocean structures or functionalities.

Then comes the proof phase. It is not necessarily used, but defining for-
mally such a framework enables developers of language extensions to formally
check their well-formedness and properties. For example, defining in Tom a set
of rewrite rules on top of Java, one could check at that step the termination
of the rewrite system, therefore ensuring a better confidence in the program
behavior.

Last, the island should be dissolved. This means that the framework should
provide a compilation of island built programs (that may embed ocean subparts)
into pure ocean ones. For example again, in Tom, a set of rewrite rules will
be compiled into a Java program implementing the normalization process for
these rules. Of course the framework setting should ensure that the properties
proved at the island level are still valid after dissolution into the concerned ocean
code.

To achieve these goals, after introducing the basic notations in Section 2, we
present in Section 3 the anchoring mechanism, in Section 4 the dissolution one
and in Section 5 the island framework, making precise the properties that the
island should fulfill to be formal and to preserve proofs. From these definitions
and results, we illustrate in Section 6 how domain specific languages [14] can
be implemented in this Formal Islands framework. Finally, we present a main
application in the context of the Tom project.

1 http://tom.loria.fr
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2 Preliminaries

When considering the problem of combining two different languages, we have to
understand the relationship that exists between the grammars of these languages,
the programs that can be written in these grammars, their semantics, and the
objects that are manipulated by these programs.

We assume the reader to be familiar with the basic definitions of languages
constructions and first order term rewriting as given for example in [2]. We briefly
recall or introduce notations for the main concepts that will be used along this
paper.

A grammar is a tuple G = (A, N, T, R) where A denotes the axiom, N and
T , disjoint finite sets of respectively, non-terminal and terminal symbols, and R
a finite set of production rules of the form N → (N ∪ T )∗. left(R) is the set of
left-hand sides of R. We note L(G) the language recognized by the grammar G.
When a grammar G is not ambiguous, to each valid program we can associate
abstract syntax tree representations. Assuming given such a representation, we
note AST(G) the set of all abstract syntax trees, and their subtrees.

In the following, we only consider unambiguous grammars. Therefore, we make
no distinction between the notions of grammars and valid programs p, and the
notions of signature and abstract syntax trees. We note past the abstract syntax
tree that represents p. Given a term t = past, t ∈ AST(G), we note getSort(t)
its sort, which corresponds to the non-terminal generating p.

In addition to the definition of grammars, we use a big-step reduction relation
à la Kahn, written �→bs, to characterize the semantics of the ocean and the islands
languages. Given a set O of objects manipulated by a program, corresponding
to all possible instances of the data-model, an environment is a function from X
to O, where X is a set of variables. Env denotes the set of all environments.
The reduction relation �→bs is defined using a set of inference rules of the form:
〈ε, i〉 �→bs ε′ with i ∈ AST(G), and ε, ε′ ∈ Env

In the following, we consider two languages il and ol, the island and the ocean
languages, to which correspond a grammar Gil (resp. Gol), a set of variables Xil

(resp. Xol), a semantics bsil (resp. bsol) based on a set of objects Oil (resp. Ool),
and a set of inference rules Ril (resp. Rol).

3 Anchor

Given two languages il and ol, we introduce the notions of syntactic anchor and
representation function, which make a connection between il and ol in syntactic
and semantic ways.

3.1 Syntax

The syntactic anchor consists in associating ol non-terminals to il non-terminals,
to obtain ol programs with il parts. In Definition 1, we introduce two types of
anchors corresponding to two types of islands. One called simple island, corre-
sponds to pure il constructs and the other called islands with lakes, corresponds
to islands which can recursively contain ol constructs.
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Definition 1. Given two grammars Gol = (Aol, Nol, Tol, Rol) and Gil =
(Ail, Nil, Til, Ril), we define two kinds of syntactic anchors:

– A simple syntactic anchor is a function anch(Gol,Gil) ∈ Nol → Nil where we
assume that (Tol ∩ Til) = ∅ ∧ (Nol ∩Nil) = ∅,

– A syntactic anchor with lakes is a function anch(Gol,Gil) ∈ Nol → Nil where
we assume that (Tol ∩ Til) = ∅ ∧ (Nol ∩ left(Ril)) = ∅.

From this definition, the grammar Goil resulting from the combination of ol and
il, is defined by: Goil = (Aol, Nol ∪Nil, Tol ∪ Til, Rol ∪Ril ∪ anch(Gol,Gil)).

Therefore, the syntax of the language oil, combination of ol and il is function of
the grammars Gol and Gil, and of the syntactic anchor noted anch.

Example 1. As a first example, let us consider the two grammars, Gol =
({A}, {A}, {a}, {(A ::= a), (A ::= Aa)}) and Gil = ({B}, {B}, {b}, {(B ::= b)}).
The language L(Gol) is the set of sequences a, aa, aaa, . . . The language L(Gil)
contains only b. By considering the simple syntactic anchor anch(Gol,Gil) =
{(A ::= B)} we define the language L(Goil) which consists of words like a, b, aa,
ba and more generally of any sequence of a or b ended by a.

For simple syntactic anchors, the condition Tol ∩ Til = ∅ ∧Nol ∩Nil = ∅ ensures
that there is no conflict between the two grammars. But in some cases, it is
interesting to allow the embedding of ocean constructs inside island code. We
call lakes such constructs that are not modified by the dissolution phase. In term
of syntactic anchor, this means that the il grammar can use non-terminals from
Gol. For this notion of syntactic anchor with lakes, the non-conflict condition
becomes Tol ∩ Til = ∅ ∧Nol ∩ left(Ril) = ∅.

Example 2. To illustrate the notion of anchor with lakes, we now consider an
ocean language ol which allows to manipulate arrays of integers. The considered
island language il allows to manipulate lists of integers, where the notion of
integers comes from the ocean language: this is why it is considered as a lake.
The grammars of both languages are given in Figure 2.

In ol, an array can be allocated and filled with 0 using the construction
array(n). Given an array t and an integer n, t[n] allows to read the contents
of t. Similarly, t[n] = i, with i ∈ N, allows to modify the contents of t.

In il, data structures are lists, which are classically defined by two constructors
nil and cons. This language defines islands with lakes since the non-terminal
〈int〉 comes from Gol. To interconnect the two languages, we define the anchor
anch = {(〈instr〉 ::= 〈instruction〉), (〈array〉 ::= 〈list〉), (〈int〉 ::= 〈expr〉)}.

Using the grammar defined in Figure 2, the following program is valid in
the ocean language: t=array(5); t[0]=3; t[1]=7. This program can be ex-
tended by l←cons(t[1],cons(t[2],nil)); x=l[1]; y=head(l). This shows
that a list of the island language can be considered as an array by the
ocean language (l[1]). The integer t[1] and t[2] are lakes in the island
l←cons(t[1],cons(t[2],nil)).
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The ocean language

〈instr〉 ::= 〈instr〉; 〈instr〉
| 〈vararray〉 = 〈array〉
| 〈varint〉 = 〈int〉
| 〈array〉[〈int〉] = 〈int〉

〈array〉 ::= array(〈int〉)
| 〈vararray〉

〈vararray〉 ::= x ∈ X
〈varint〉 ::= x ∈ X
〈int〉 ::= i ∈ N

| 〈varint〉
| size(〈vararray〉)
| 〈array〉[〈int〉]

The island language

〈instruction〉 ::= 〈varlist〉 ← 〈list〉
〈list〉 ::= nil

| cons(〈expr〉, 〈list〉)
| tail(〈list〉)
| 〈varlist〉

〈varlist〉 ::= x ∈ X
〈expr〉 ::= 〈int〉

| head(〈list〉)

The syntactic anchor relation

〈instr〉 ::= 〈instruction〉
〈array〉 ::= 〈list〉
〈int〉 ::= 〈expr〉

Fig. 2. Syntax of the combination of the tool languages

3.2 Semantics

As for the syntax, we assume given a semantics definition for each language. In
the most general case, the objects manipulated by these two languages are not
of the same nature. For example, the ocean language can manipulate tuples and
the island language, algebraic terms. Before giving a semantics to the extended
language, we have to make precise the data-structure relation between island
and ocean objects (the representation and abstraction functions) and how the
data-structure properties in il are mapped to data-structure properties in ol (the
predicate mapping). The notion of representation and abstraction functions is
originally from data refinement theory [6, 1], used to convert an abstract data
model (such as lists) into implementable data structures (such as arrays). In our
framework, islands are considered as abstract comparing to ocean.

Definition 2. Given a set of island objects Oil and a set of ocean objects Ool, a
representation function ! " is an injective total function from Oil to Ool and an
abstraction function # $ is a surjective function (potentially partial) from Ool to
Oil such that # $.! " = IdOil.

Example 3. Suppose that we manipulate sets in the island and these sets are
represented by lists in the ocean. ! " can associate to every set the list containing
the same elements in a determined order and # $ can associate to every list from
ocean the set of its elements, which is not the inverse of ! ".

Example 4 (from example 2). Every list from the island language can be rep-
resented by an array in the ocean language which contains exactly the same
integers in the same order. We note this representation function map1. The
function map−1

1 can be simply chosen as an abstraction. The second kind of
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objects manipulated by the ocean language is the integers whose representation
is the same in the two languages.

In Definition 2, representation and abstraction functions have been introduced
to establish a correspondence between data structures in the island and in the
ocean language. However, we did not put any constraint on the representation of
objects. In particular, the function ! " does not necessarily preserve structural
properties of island objects. In practice, we need to consider mappings such
that properties are preserved. Therefore, for each language we consider a set
of predicates noted Pol and Pil corresponding to structural properties, and we
introduce the notion of predicate mapping.

Definition 3. Given a set of island predicates Pil and a set of ocean predicates
Pol, a predicate mapping φ is an injective mapping from Pil to Pol such that
∀p ∈ Pil, arity(p) = arity(φ(p)). This mapping is extended by morphism on first
order formulae, using the representation mapping:

∀p ∈ Pil, ∀t1, . . . , tn, φ(p(t1, . . . , tn)) = φ(p)(t′1, . . . , t
′
n)

where t′i = !ti" if ti ∈ Oil and ti otherwise (i.e. when ti is a variable),
φ(∀x P ) = ∀x φ(P ), φ(∃x P ) = ∃x φ(P ),
φ(P1 ∨ P2) = φ(P1) ∨ φ(P2), φ(P1 ∧ P2) = φ(P1) ∧ φ(P2),
φ(¬P ) = ¬φ(P ), φ(P1 → P2) = φ(P1)→ φ(P2).

Definition 4. Given a predicate mapping φ, a representation function ! " is
said φ-formal if ∀p ∈ Pil, ∀o1, . . . , on ∈ Oil with n = arity(p)

p(o1, . . . , on)⇔ φ(p)(!o1", . . . , !on")

Example 5. Consider the relations of equality =il and =ol as an example of
predicates respectively defined on lists and arrays, and the predicate mapping
φ1 = {(=il, =ol)}. The representation function map1, introduced in example 4, is
φ1-formal because two lists are equal with =il (composed by the same integers)
if and only if their representations are equal with =ol. As a counterexample we
consider the representation function map2 that associates a list to an array, but
whose elements are in reverse order.

– eqhead(l, l′) ≡ (head(l) = head(l′)),
– eqelt(t, t′) ≡ (t[0] = t′[0])

When considering the predicate mapping φ2 = {(eqhead, eqelt)}, the represen-
tation function map2 is not φ2-formal because we can construct two lists l1 =
(1, 2), l2 = (1, 3) such that eqhead(l1, l2) is true but eqelt(map2(l1), map2(l2)),
which is equal to eqelt([2, 1], [3, 1]) is false.

Given a representation function ! " and an abstraction function # $, we can
simulate the behavior of il programs in the ol environment. Suppose we have
a big-step semantics for each language (with their respective reduction relation
bsol and bsil in their respective set of environments Envol and Envil).

To define the evaluation of il programs in an ol environment εol ∈ Envol, we
need to translate εol in an il environment εil ∈ Envil. Therefore, we extend the
representation function to environments.
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Definition 5. The extension of the representation (resp. abstraction) function
to environments also noted ! " ∈ Envil → Envol (resp. # $ ∈ Envol → Envil) is
such that:

∀εil ∈ Envil, ∀x ∈ Xil, ∀v ∈ Oil, 〈x, v〉 ∈ εil ⇔ 〈x, !v"〉 ∈ !εil"

Even if ! " is total and injective, # $ ∈ Envol → Envil can be partial. To obtain
a total function, we extend it with the empty environment for ol environments
that are not in its domain.

We simulate the reduction of il programs in an ol environment with the reduc-
tion relation of il by translating the ol environment with # $. The semantics rules
of ol, extended with mapped il rules, give a semantics to the extended language.

Definition 6. Given two semantics bsil and bsol respectively defined by sets of
inference rules Ril and Rol, we define the semantics of oil as:

– the reduction relation bsoil = bsol,
– the set of inference rules Roil = Rol ∪R′

il ∪ {r1, r2} where
• R′

il =Ril where 〈ε, i〉 �→bsil ε′ is replaced by 〈ε, δ, i〉 �→bsil 〈ε′, δ〉 (δ ∈ Envol

and ε, ε′ ∈ Envil),
• the inference rules r1 and r2:

〈#ε$, γ(ε), i〉 �→bsil 〈ε′, δ〉
〈ε, i〉 �→bsol !ε′" ∪ δ

r1
〈!ε" ∪ δ, i〉 �→bsol ε′

〈ε, δ, i〉 �→bsil 〈#ε′$, γ(ε′)〉
r2

where γ(x) = x − !#x$" denotes the elements of ocean environment x
that do not represent an island object.

The function # $ gives the corresponding il environment restricted to ol objects
which are island object’s representations, then the il construction is evaluated in
il semantics, we obtain a new environment that can be mapped by ! " to give the
target environment in ol semantics. The objects in ε that cannot be represented
in the island (ε′ − !#ε′$") are given as parameter to island evaluation in case of
lakes. This is why ε′ corresponds to the union of part of ε not represented in
the island but that can be modified by lakes (which corresponds to δ) and the
representation in the ocean of the evaluation of il instructions (which corresponds
to !ε′").

The introduction of δ in the rules of the il semantics is required for the re-
duction of lakes. Indeed, we need to keep track of ol environment when we
evaluate an island. Otherwise the lakes would be kept separated from ocean
constructs, and no reference to ocean variables would be possible. The inference
rule r1 and r2 link the two semantics: r1 is the bridge from ol to il semantics
for island evaluation and r2 is the bridge from il to ol semantics for the lakes
evaluation.

We notice that in r1, !ε′" ∪ δ is a function only if dom(!ε′") ∩ dom(δ) = ∅.
This condition means that a variable cannot represent both an island and ocean
objects in the same environment. The rule r2 introduces a similar condition.
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From now on, we consider semantics that verify these two conditions. In practice,
it means that islands and lakes have to introduce fresh variables with respect to
both ol and il environments.

Finally, the semantics of the language oil, combination of ol and il, is func-
tion of big-step semantics bsol and bsil, the representation function ! " and the
abstraction function # $.

We can now use the island formalism to extend the ol language by new con-
structs. In the following, we will see how to implement this idea in practice: for
this new language, instead of building a new compiler from scratch, we consider
a dissolution phase which replaces islands constructs by ocean constructs. With
such an approach, an existing ocean compiler could be reused.

4 Dissolution

At the syntax level, the dissolution step consists of replacing all il constructs that
appear in the ol AST by ol constructs, in order to obtain a complete ol AST.

Definition 7. Given two grammars Gil and Gol, we call dissolution a function
diss : AST(Gil)→ AST(Gol).

Such a function is said lake preserving when ∀i ∈ AST(Gil), ∀l ∈
lakes(diss(i)), we have l ∈ lakes(i), where lakes is a function that gives
the set of lakes contained in an AST (i.e an il construct).

The condition of lake-preserving authorizes dead-code elimination but ensures
that the remaining lakes have not been modified. In practice, it is verified by
constructing with the same strategy (for example top-down) a list of lakes in the
source and target program and the condition consists simply to compare the two
lists. Finding lakes in a dissolved program can be realized by marking generated
code during dissolution in order to distinguish lakes from generated code in the
target program.

Example 6. Considering again the previously introduced program:
t=array(5); t[0]=3; t[1]=7;
l←cons(t[1],cons(t[2],nil)); x=l[1]; y=head(l),
we can distinguish three ol islands:
l←cons(t[1],cons(t[2],nil)), l (from l[1]), and head(l).

The dissolution of these islands could (depending on the implementation)
result in the following program:
t=array(5); t[0]=3; t[1]=7; x=t[0];
l=array(2); l[0]=t[1]; l[1]=t[2]; x=l[1]; y=l[0];.

In term of semantics, the ol constructs that are generated must have the same
evaluation as the il constructs that they replace.

Definition 8. Given representation and abstraction functions ! ", # $, a disso-
lution function diss is well-formed if:
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– for every i ∈ AST(Gil), for every environment ε ∈ Envil, we have: 〈ε, i〉 �→bsoil

ε′ ⇔ 〈!ε", diss(i)〉 �→bsol ε′,
– the ol program resulting from dissolution is syntactically correct. More for-

mally, ∀i ∈ AST(Gil), getSort(i) ∈ anch(getSort(diss(i))),
– the dissolution function is lake preserving.

Figure 3 shows the link between the evaluation of an il instruction with il se-
mantics and the execution of the corresponding ol instruction (by dissolution).
The states after evaluation are the same.

〈ε, i〉 !ε′" ∪ δ

〈#ε$, ε− !#ε$", i〉 〈ε′, δ〉

〈ε, diss(i)〉 !ε′" ∪ δ

bsoil

bsil

bsol

# $ ! "

diss =

Fig. 3. Reduction of an il dissolution in ol semantics

To summarize, an island language should fulfill the following requirements:

Definition 9. Given two languages ol and il described by a grammar, a big-step
semantics, a set of objects, and a set of predicates in these objects, il is an island
language for ol if there exist:

– a syntactic anchor anch, either simple or with lakes (Definition 1),
– representation and abstraction functions ! ",# $ (Definition 2),
– a dissolution function diss (Definition 7).

5 Formal Islands

Definition 10. Given two languages ol and il, il is a Formal Island over ol if:

1. il is an island for ol (Definition 9),
2. there exists a predicate mapping φ for objects (Definition 3) such that the

representation function ! " is φ-formal (Definition 4),
3. the dissolution function diss is well-formed (Definition 8).

Condition 1 is purely syntactic and simple to verify. Condition 3 is similar to the
correctness of a compilation process and condition 2 is more specific to the island
formalism. This definition of Formal Islands allows us to ensure the preservation
of properties.
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The environment is extended by morphism on first order formulae:

∀p ∈ Pil, ∀t1, . . . , tn, ε(p(t1, . . . , tn)) = ε(p)(t′1, . . . , t
′
n)

where t′i = ε(ti) if ti ∈ Xil and ti otherwise (i.e. ti is an object),
ε(∀x P ) = ∀x ε(P ), ε(∃x P ) = ∃x ε(P ),
ε(P1 ∨ P2) = ε(P1) ∨ ε(P2), ε(P1 ∧ P2) = ε(P1) ∧ ε(P2),
ε(¬P ) = ¬ε(P ), ε(P1 → P2) = ε(P1)→ ε(P2).

From this definition, we note ε |= pre⇔ ε(pre).

Proposition 1. Given a Formal Island il over ol and pre, post two first order
formulae built over Pil predicates, ∀i ∈ dom(diss), ε ∈ Envil, we have:

ε |= {pre}i{post} ⇔ !ε" |= {φ(pre)}diss(i){φ(post)}

The proof of this proposition by induction on the structure of the formulae pre
and post is given in [3].

6 Domain Specific Languages Implemented by Formal
Island

A Domain Specific Language (DSL) is a programming language designed for a
very specific task or domain, contrary to general programming languages like
Java. A few papers give an overview on the Domain Specific Languages imple-
mentation methodology [13, 10, 14]. Summarizing the main ideas, this can be
achieved by language specialization (removing features of an existing language),
language extension (adding new features to an existing language), language in-
vention (designed from scratch with no commonality with existing languages) or
piggyback (using partially an existing language). Some works on modular and
extensible semantics [7] are well-tailored for DSL specifications.

In [13], Spinellis proposes eight recurring patterns to classify DSL design and
implementation. One of this pattern is the piggyback pattern which corresponds
informally to the design of island languages. The piggyback structural pattern
uses the capabilities of an existing language to be a hosting base for a new
DSL. Thus, the DSL shares common elements with an existing language and is
compiled in the host language.

In the classification of [10], the patterns correspond to different phases of
DSL development: decision, analysis, design and implementation. Formal Island
gets involved in two related phases of DSL development: the design and im-
plementation phases. Formal Islands correspond in terms of design patterns to
the Language exploitation (i.e. based on an existing language) and in terms of
implementation pattern to the Embedding and Preprocessor patterns.

MetaBorg [4] proposes a general method to provide concrete syntax for domain
abstractions to application programmers and thus promotes APIs to the lan-
guage level (for example SQLJ would have been easily implemented in Metaborg).
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This method is based on SDF for the syntax and Stratego language for the as-
similation. The concept is very similar to Formal Islands. However, the data-
structures manipulated by the domain-specific-language and the host language
are identical. MetaBorg can therefore be seen as an implementation technique
for purely syntactic Formal Islands.

To illustrate the link between DSL and Formal Islands, we will detail the
language SQLJ [5, 9], an example of DSL implemented using the piggyback
pattern. SQLJ is an interface to the JDBC domain-specific-library hiding the
complexity of the API.

To avoid grammar conflicts and make identification of constructs easier, each
SQLJ constructs starts with #sql token (which is not a legal Java identifier).
The simplest SQLJ executable clauses consist of the token #sql followed by a
SQL statement enclosed in curly braces. For example, the following SQLJ clause
may appear instead of a Java instruction.

public void honors(float limit) {
#sql{
SELECT STUDENT AS "name", SCORE AS "grade"
FROM GRADE_REPORTS
WHERE SCORE >= :limit

}
}

The SQL statements can contain variable names that correspond to Java vari-
ables (the variable limit for example). These variables are prefixed by a colon
and they correspond to the notion of lake introduced previously.

Syntactic anchor. If we have a grammar of Java where 〈Statement〉 and
〈Instruction〉 are Java non-terminals, we can define the following simple syn-
tactic anchor anch = {(〈Statement〉 ::= 〈Declaration〉), (〈Instruction〉 ::=
〈ExecutableStatement〉)}. The non-terminal 〈Declaration〉 corresponds to
SQLJ declarations used to initialize a JDBC connection. As illustrated above,
〈ExecutableStatement〉 corresponds to embedded SQL queries.

Data-structure anchor. In SQLJ, the representation and abstraction functions
between SQL objects and Java objects are given by conversions from SQL types
to Java types. For example, the SQL CHAR type is converted into a Java String.
Therefore, the results of a SQL query have to be translated into Java objects
before being stored in Java variables.

Dissolution. In the SQLJ formalism, the SQL language is not really the embed-
ded language because this is not the SQL requests which are dissolved in Java,
but rather the SQLJ instructions which contain SQL requests. The SQLJ pre-
processor provides type-checking and schema-object-checking to detect syntax
errors and missing or misspelled object errors in SQL statements at translation
time rather than at runtime (like in JDBC). Programs written in SQLJ are,
therefore, more robust than JDBC programs. We just give the intuition of the
translation step by giving the dissolution in Java of the program given previously:
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public void honors(float limit) {
java.sql.PreparedStatement ps = recs.prepareStatement(

"SELECT STUDENT, SCORE "
+ "FROM GRADE_REPORTS "
+ "WHERE SCORE >= ? ");

ps.setFloat(1, limit);
ps.executeQuery();

}

The object recs is a JDBC connection of type java.sql.Connection. The
SQLJ translator verifies that in the SQLJ statement, limit is of type float in
order to be compared with SCORE, whose SQL type is REAL.

In the case of SQLJ, there is no formal property given for the mapping between
types or for the compilation of the SQLJ instructions. We cannot ensure that
the Java compiled code is consistent. Our framework is a base to formalize DSL
implemented using the piggyback pattern. It gives conditions to ensure that
properties established at the DSL level are preserved by compilation.

7 Tom: A Formal Island for Pattern-Matching

An other example of island language is Tom, which adds pattern matching
facilities to imperative languages such as C and Java. Indeed, it is in this
context that we identified the need to have a notion of Formal Island frame-
work. This helps us to understand how properties of Tom can be preserved by
compilation.

As presented in [12], a Tom program is written on top of a host language and
extended by several new constructs. It is out of the scope of this paper to present
the language in detail and it is sufficient here to consider that Tom provides three
main constructs:

– %op allows to define an algebraic signature (i.e. names of constructors with
their profile),

– %match corresponds to an extension of switch/case, well known in func-
tional programming languages,

– ‘ allows to build an algebraic term from the host language.

Therefore, a program can be seen as a list of Tom constructs (the islands) inter-
leaved with some sequences of characters (the ocean). During the compilation
process, all Tom constructs are dissolved and replaced by instructions of the host
language, as it is usually done by a preprocessor. From this point, we consider
that the ocean language is Java and we call JTom this specialized version of Tom.

The following example shows how a simple symbolic computation (addi-
tion) over Peano integers can be defined. This supposes the existence of
a data-structure and a mapping (defined using %op) where Peano integers
are represented by zero and successor ; for instance the integer 3 is denoted
suc(suc(suc(zero))).
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public class PeanoExample {
%op Term zero() { ... }
%op Term suc(Term) { ... }
...
Term plus(Term t1, Term t2) {

%match(t1, t2) {
x,zero -> { return ‘x; }
x,suc(y) -> { return ‘suc(plus(x,y)); }

}
}
void run() {
System.out.println("plus(1,2) = " + plus(‘suc(zero),‘suc(suc(zero))));

}
}

In this example, given two terms t1 and t2 (that represent Peano integers), the
evaluation of plus returns the sum of t1 and t2. This is implemented by pattern
matching: t1 is matched by x, t2 is possibly matched by the two patterns zero
and suc(y). When zero matches t2, the result of the addition is x (with x = t1,
as instantiated by matching). When suc(y) matches t2, this means that t2 is
rooted by a suc symbol: the subterm y is added to x and the successor of this
number is returned, using the ‘ construct. The definition of plus is given in
a functional programming style, but the plus function can be used in Java to
perform computations. This example illustrates how the %match construct can
be used in conjunction with the considered native language. We can notice that
JTom programs contain lakes (the right part of a rule is a Java statement). Note
also that lakes can contains islands, introduced by ‘ for example.

From the definition of Formal Islands (Definition 10), we define for JTom the
syntactic anchor, the representation function, the predicate mapping, and gives
the intuition of the dissolution function which corresponds to the Tom compiler
task.

7.1 Syntactic Anchor

In the case of JTom, the syntactic anchor anch is defined as follow:

anch =

⎧⎨
⎩

(〈Statement〉 ::= 〈OpConstruct〉),
(〈Instruction〉 ::= 〈MatchConstruct〉),

(〈Expression〉 ::= 〈BackQuoteConstruct〉)

⎫⎬
⎭

7.2 Data-Representation Anchor

In JTom, the notion of term can be implemented by any data-structure. Once
given such an implementation, the data-representation anchor can be defined.
Let us consider that terms are implemented using a record (sym:integer,
sub:array of term), where the first slot (sym) denotes the top symbol, and
the second slot (sub) corresponds to the subterms. It is easy to check that the
following definition of the predicate mapping provides a formal anchor :
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eq(t1, t2)
�= !t1".sym = !t2".sym ∧ ∀i ∈ [1..ar(!t1".sym)],
eq(t1.sub[i], t2.sub[i])

is fsym(t, f) �= !t".sym = !f"

The first definition says that two terms are equal if the representations of
their root symbol are equal and the subterms are respectively equal. The second
definition says that a term t is rooted by f if the representation of t (which is a
record) has the representation of f as first element.

7.3 Dissolution

Due to lack of space, we cannot give in detail the complete definition of the
dissolution function which corresponds to the compilation phase. Therefore, we
just give the intuition of the translation step by illustrating the dissolution of
the PeanoExample program given previously.

public Term plus(Term t1, Term t2) {
if (is_fsym_zero(t2)) {
return t1;

} else if (is_fsym_suc(t2)) {
return make_suc(plus(t1,subterm_suc(t2,1)));

}
}

With these definitions, Tom is an island for Java. We have proved that the
anchor is formal. The last condition to obtain a Formal Island is the proof that
the dissolution is well-formed. As shown in [8], a first step in this direction is the
development of a certifying compiler which proves, for each compilation, that
the dissolution preserves the semantics of the pattern matching.

8 Conclusion and Future Work

We have defined the notion of Formal Island to provide a formal framework al-
lowing language designers to base their languages extensions. For this framework
to back-up properties proofs, e.g. about safety or security, we have shown that
under sufficient conditions, properties established at the island level are pre-
served once dissolved into the host language. We have then shown application
of this framework to DSL like SQLJ and to Tom.

Amongst the many applications that we envision, the safe treatment of XML
transformations, via appropriate Java based islands, is particularly promising
and is currently under development. Of course such a framework should be closely
linked to proving tools adapted to the properties to be checked: another direction
that we are also investigating.

Acknowledgments. We sincerely thank the anonymous referees for their valu-
able and detailed comments that led to a substantial improvement of the paper.
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Abstract. We propose two characterizations of complexity classes by
means of programming languages. The first concerns Logspace while the
second leads to Ptime. This latter characterization shows that adding a
choice command to a Ptime language (the language WHILE of Jones [1])
may not necessarily provide NPtime computations. The result is close
to Cook in [2] who used “auxiliary push-down automata”. Logspace is
obtained through a decidable mechanism of tiering. It is based on an
analysis of deforestation due to Wadler in [3]. We get also a characteri-
zation of NLogspace.

We propose a contribution to the program of Jones [1]: “We maintain that Com-
putability and Complexity theory, and Programming Language and Semantics
[...] have much to offer each other, in both directions.” ; we give characterizations
of complexity classes by means (of restrictions) of programming languages.

The present contribution belongs to a largely wider program (see [4, 5, 6])
where we have shown the interest of that kind of characterization. Let us recall
it briefly. From a practical point of view, a static analysis allows an evaluation
of the bounds on the resources before computations are effectively performed.
It can be used by an operating system to manage processes. In particular, it
avoids the monitoring of memory usage. Maybe more interestingly, it can be
used by the compiler to deal with memory management, and so, to optimize
the complexity of programs. Such analyses are the theoretical core of projects
like Amadio’s CRISS project1 whose objective is to control resources—time and
space—for synchronous systems.

We propose a characterization of Logspace. It is obtained with respect to
a kind of tiering discipline. This fruitful approach has been initially considered
by Bellantoni and Cook in [7] and Leivant and Marion [8] who characterized
Ptime. Leivant and Marion showed that such a stratification could be used for
other complexity classes, see [9, 10]. Following Bellantoni-Cook, Neergaard [11]
has shown what restrictions of the language B leads to Logspace. The current
proposition differs from the preceding ones in the following way. The role of
tiering is not to control recursion but rather to restrict the width of the call
graph. It is essentially based on the work of Wadler [3] and Jones [1].

1 http://www.pps.jussieu.fr/~amadio/Criss/criss.html
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Among space characterizations, we mention the work of Hofmann [12, 13] who,
in particular, showed how to compile functional programs to malloc()-free C.
Applications of these techniques are to be found in the Embounded Project2

whose aim is to quantify and certify resources for real-time embedded systems.
An other approach, based on linear logic, was carried on by Baillot and Terui,
see [14]. In the vein of Leivant, Oitavem proposed an interesting characterization
of small complexity classes in [15, 16].

The second characterization we propose deals with non determinism. We show,
and the result is surprising, that adding some choice command in the language
WHILE of Jones does not change the class of computed functions. Naively, one
would have expected to characterize NPtime. Indeed, if one considers — as
does Jones — the class of functions computed in polynomial time in WHILE, one
gets Ptime. Adding the choice command, one gets NPtime. Since WHILE-cons-
free programs characterize Ptime, adding the choice command “should” have
resulted in NPtime. It is not the case, and we show that such a system char-
acterize Ptime. The result is all the more surprising that for the corresponding
space characterization, that is of Logspace, adding the choice command leads
to the corresponding non-deterministic complexity class NLogspace. We men-
tion here the work of Cook [2] whose characterization of Ptime by means of
auxiliary pushdown automata is in essence close to us. The main difference lies
in the fact that we have an implicit call stack (for recursion) where Cook has an
explicit one.

The upper bound on the complexity of functions computed in Logspace
is obtained through a mechanism of compilation. The syntactical restrictions
make the method sound. Two points. First, we do not explicitly compute time
or space bounds. We know that they exist as a consequence of Jone’s analysis of
life without cons. Second, the proposition enters the field of implicit complexity
as one has to compile the program in order to stay within Logspace. Computing
in the original framework leads to polynomial time computations.

The structure of the paper is as follows. In Section 1, we define the two pro-
gramming languages we will consider, namely the language WHILE of Jones and
a functional language. We define also some syntactical restrictions on them, in
particular, we present our tiering discipline. In Section 2, we show the Logspace
characterization. At that point, we show how tiering can be used for the evalu-
ation of programs. Section 3 deals with non-determinism, choice command and
the corresponding complexity classes. We give a polynomial time procedure for
computing non-deterministic WHILE-cons-free programs.

1 Programming Languages

We introduce two programming languages, WHILE programs, and FOFP programs.
We suppose from now on, that we are given a signature Cns, that is, some
symbols with their arity. These symbols are called the constructor symbols.
The signature defines a term algebra T (Cns) on which computations will be
2 http://www.embounded.org/
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performed. We suppose that among these symbols one is nil of arity 0. The
expression nil serves as “false”. Any other value is “true”.

For each constructor symbol c, we define a set of destructor functions dc,k

which map c(t1, · · · , tn) �→ tk. Finally, we suppose, for any constructor symbol
c, we are given a pattern matching function pc that tells whether a term has
the form c(t1, · · · , tn) or not.

1.1 The WHILE Language

Let us begin with the syntax, which is due to Jones [1], except that we authorize
more than one input. This is only for convenience.

Definition 1. A WHILE program is given by the following grammar:

P : Program ::= read X1, ..., Xn; C; write Y
C : Command ::= Z := E

| C1; C2
| if E then C1 else C2
| while E do C done

E : Expression ::= Z
| D
| c(E1, E2, . . . , Ek)
| dc,k E
| pc E

X, Y, Z : Variable ::= X0 | X1 | . . .
D : Data− value ::= T (Cns)

We note Var(p) the variables appearing in a program p.

The semantics are given by Jones. We recall it informally. A store for a pro-
gram p is a function σp : Var(p) → T (Cns). The initial store given the input
data d1, d2, . . . , dn is the store σ

p
0(d1, . . . , dn) = [X1 �→ d1, . . . , Xn �→ dn, Z �→

nil, . . . , Y �→ nil]. Commands have the intuitive meaning. For instance, in an
expression if E then C1 else C2, one tests if E = nil, in which case one executes
C1. Otherwise, one executes C2. Assignments modify the store.

Definition 2. Given a program p, its execution induces a partial function �p� :
T (Cns)n → T (Cns) which maps d1, d2, . . . , dn to σ(Y) if the program terminates
and where σ is the last store of the computation, otherwise it is undefined.

Definition 3. A program is called cons-free, if it does not use an expression of
the form c(E1, . . . , Ek). We note WHILEcons-free the set of cons-free programs.

Theorem 1 (Jones [1]). The set of decision problems computed by cons-free
programs is exactely Logspace.

Definition 4. The recursive extension of WHILE is described as follows. To
WHILE, we add the instruction call that calls some sub-procedure. A program
is given by
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globalvariable U_1, ..., U_u;
procedure P1; localvariable P11, ..., P1v;
C1;
procedure P2; localvariable P21, ..., P2w;
C2;
.......
read U1; call P1; write U1

Variables appearing in Ci belong to the local variables of the procedure or to
the global variables. The semantics are briefly as follows. Each time one calls
a new procedure, one stacks some fresh local variables. Then, one executes the
instructions until one reaches the end of the procedure (modifying the fresh local
variables and the global ones). At this point, just forget the local variables. We
note WHILErec−cons−free the set of such programs.

Theorem 2 (Jones [1]). The set of decision problems computed by
WHILErec-cons-free programs is exactly the set of Ptime decision problems.

1.2 FOFP

We define a generic first order functional programming language. The vocabulary
Σ = 〈Cns,Op,Fct〉 is composed of three disjoint domains of symbols. The set of
programs is defined by the following grammar.

Programs &p ::= d1, · · · , dm

Definitions & d ::= f(x1, · · · , xn) = ef

Expression & e ::= x | op(e1, · · · , en) | f(e1, · · · , en)
| c(e1, · · · , en)
| if e1 then e2 else e3
| let x = e1 in e2
| case x1, · · · , xn of p1 → e1 . . . p� → e�

Patterns & p ::= x | c(p1, · · · , pn)

where x ∈ Var is a variable, c ∈ Cns is a constructor, op ∈ Op is an operator,
f ∈ Fct is a function symbol, and pi is a sequence of n patterns. Throughout,
we generalize this notation to expressions and we write e to express a sequence
of expressions, that is e = e1, . . . , en, for some n clearly determined by the
context.

Throughout the proofs which follows, we make no distinction between oper-
ators and function symbols. We have introduced operators only for convenience
when writing the examples.

The set of variables Var is disjoint from Σ. In a definition, ef is called the
body of f. A variable of ef is either a variable in the parameter list x1, · · · , xn

of the definition of f or a variable which occurs in a pattern of a case definition.
In a case expression, patterns are supposed to be non overlapping. We will come
back to this Hypothesis in the Section on non determinism.
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Given a function symbol f, we say that an expression e is f-free if there is no
occurrences of f in e. We call functional an expression of the form g(e1, · · · , en).

Lastly, it is convenient, because it avoids tedious details, to restrict our atten-
tion to programs without nested case , let , if expressions within functional ex-
pressions. This is not a severe restriction as one can easily transform programs to
avoid this nesting. For instance, one transforms f(. . . , if e1 then e2 else e3, . . .)
into if e1 then f(. . . , e2, . . .) else f(. . . , e3, . . .).

Definition 5. Rules for evaluation are given by Fig. 1. A function f : T (Cns)k

→ T (Cns) is computed by a program p if there is a function f ∈ p such that
∀t ∈ T (Cns)k : f(t) ↓ f(t).

From now on, we suppose that the programs that we consider are terminat-
ing. Any method for proving their termination can be considered, for instance
Recursive Path Orderings, Dependency Pairs, and so on.

t ∈ T (Cns)

t ↓ t

e1 ↓ v1 . . . en ↓ vn f(x1, · · · , xn) = ef ef[xi ← vi] ↓ v

f(e1, · · · , en) ↓ v

e1 ↓ tt e2 ↓ v

if e1 then e2 else e3 ↓ v

e1 ↓ ff e3 ↓ v

if e1 then e2 else e3 ↓ v

e1 ↓ u e2[x ← u] ↓ v

let x = e1 in e2 ↓ v

ek ↓ uk ∃σ, i : piσ = u eiσ ↓ v

case t1, · · · , tn of p1 → e1 . . . p� → e� ↓ v

Fig. 1. Call by value semantics of a program p

Definition 6. We say that a program p is cons-free if the definitions do not use
the rule c(e1, · · · , en) of the grammar. In other words, there are only constructors
in patterns. The set of such cons-free programs is noted FOFPcons-free.

Definition 7. A definition f(x1, · · · , xn) = ef induces a relation on function
symbols. Say that f calls g if g appears in the body of f. We note this relation →.
The reflexive-transitive closure of this relation induces a pre-order on function
symbols, noted ∗→. The corresponding equivalence relation ( is defined by f (
g ⇔ (f ∗→g ∧ g ∗→f). The corresponding strict partial order is noted ≺. We have
g ≺ f⇔ (f ∗→g ∧ ¬(f ∗→g)).

Definition 8. We say that an expression e is tail-recursive w.r.t. a function
symbol f if

1. e = x,
2. e = g(e1, · · · , en) where for all h ∈ e, h ≺ f,
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3. e = f(x1, · · · , xn),
4. e = if e1 then e2 else e3 and e1 is f-free and both e2 and e3 are tail recur-

sive wrt f,
5. e = case x of p1 → e1 . . . p� → e� and for all i ≤ � the expression ek is tail

recursive.

A definition f(x1, · · · , xn) = ef is tail recursive if ef is tail recursive wrt f. A
program is tail recursive if any definition is tail recursive. The set of such tail
recursive programs is noted FOFPtr. We note FOFPtr-cons-free the set of programs
that are both tail recursive and cons-free.

The following is due to Jones [17].

Theorem 3

1. The set of decision problems computed by FOFPcons−free programs is exactly
the set of Ptime decision problems.

2. The set of decision problems computed by FOFPtr−cons−free programs is ex-
actly the set of Logspace decision problems.

In the following, we reinforce Definition 8 to allow nesting of functions. We
propose a finer discipline on programs that stays within Logspace.

Example 1.

x1 < x2 = case x1, x2 of x1 − x2 = case x1, x2 of
x′

1,0→ ff x′
1,0→ x1

0, s(x′
2)→ tt 0, x′

2 → 0
s(x′

1), s(x
′
2)→ x′

1 < x′
2 s(x′

1), s(x
′
2)→ x′

1 − x′
2

pgcd(x1, x2) = case x2 of
0→ x1

s(x′
2)→ if x1 < x2

then pgcd(x2, x1)
else pgcd(x1 − x2, x2)

Here the first two definitions are tail-recursive. This is not the case of the third
expression. Note that it cannot be directly handled by Wadler’s approach, see [3],
as there is some composition of function symbols. Note also that there is more
than one occurrence of pgcd in the right hand side of the second rule. In the
following, we show how to compute pgcd in Logspace.

Definition 9. An expression is strongly tail-recursive if it follows Definition 8
except that clauses (2) and (3) are replaced by clauses

2’. e = g(e1, · · · , en) and for all the i ≤ n, ei is f-free. Here, g may be equal to
f ;

6’. e = let x = e1 in e2 where e1 is f-free and e2 is strongly tail-recursive.
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This extends to the definition of function symbols and to programs. We note the
set of such programs FOFPs−tr.

One may observe that the above definition of the pgcd respects the strong-tail re-
cursiveness condition. The next Section shows that programs in FOFPs-tr-cons-free

can be computed within Logspace.

Theorem 4. The set of decision problems computed by FOFPs−tr−cons−free pro-
grams is exactly the set of Logspace decision problems.

Finally, we propose a notion that goes beyond strong tail-recursion.

Definition 10 (Linear programs). Given a function symbol f, the level of an
expression is given by the inductive rules:

– lvlf(x) = 0,
– lvlf(g(e1, · · · , en)) = 1 +

∑
k≤n lvlf(ek) where g ( f,

– lvlf(g(e1, · · · , en)) =
∑

k≤n lvlf(ek) where g ≺ f,
– lvlf(let x = e1 in e2) = lvlf(e1) + lvlf(e2),
– lvlf(if e1 then e2 else e3) = lvlf(e1) + max(lvlf(e2), lvlf(e3)),
– lvlf(case x of p1 → e1, . . . , pk → ek) = max(lvlf(e1), . . . , lvl(ek)).

We say that a definition f(x) = ef is linear if lvlf(ef) = 1. A program is
linear if any definition has level 1. The set of such programs is noted FOFPlin.

Theorem 5. Decision problems decided by linear cons-free programs are exactly
Logspace decision problems.

Example 2. The following program is not strongly-tail-recursive but linear.

pred(x) = case x of half(x) = case x of
0→ 0 0→ 0

s(x′)→ x′ s(0)→ 0
incr(x, y) = y − pred(y − x) s(s(x′))→ incr(half(x), x)

log(x) = case x of
0→ 0

s(x′)→ incr(log(half(x)), x)

2 Compiling FOFP Programs

The proofs of the Theorems 4, 5 involve the same argument. We compile pro-
grams in FOFPs−tr−cons−free and in FOFPlin−cons−free to WHILE-cons-free. As
a consequence, function computable in these two languages can be computed
within Logspace due to Theorem 3. The converse part, that is to show that
all Logspace decidable problems can be computed by strongly-tail-recursive
programs or linear-cons-free programs is a direct consequence of the fact that
FOFPtr−cons−free ⊆ FOFPs−tr−cons−free ⊆ FOFPlin−cons−free.

We first begin with a few observations.
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Proposition 1. Given a program in FOFPcons−free, for any constructor terms
t, and any expression e, suppose that e[xi ← ti] ↓ v, then, v is a subterm of one
of the ti.

Corollary 1. For a FOFPcons−free program, the height of the evaluation tree (cf.
Fig. 1) is bounded by a polynomial in the input.

Proof. Given a term t, the number of subterms of t is linear in the size of t.
Suppose we are given a constant d. Consider the set Ct = {s1, · · · , sn | n ≤
d ∧ (∀i ≤ n : ∃j ≤ n : si � tj)}. Then, this set has polynomial size in the size
of t. Now, take d to be the maximal arity of a symbol, the polynomial bound
together the property of termination of programs and the preceding proposition
gives the result.

Proposition 2. Suppose that f1, . . . ,fk are FOFP programs which are Logspace
computable. Then any function f(x1, . . . , xn) = ef with ef a composition of
the functions f1, . . . , fk is computed by a WHILE-cons free program, and so, is
Logspace. Given an expression e, we note the corresponding code Ce.

Proof. The proof is by induction on the expression ef. Suppose that we are given
for each function fi a WHILE-cons-free program read Xfi1, Xfi2, . . . , Xfik; Cfi;
write Y; that computes it. We suppose w.l.o.g that these programs do not change
de values of the input variables. Suppose that ef = xk, it is computed by:

read X1, X2, ..., Xn;
Y := Xk;
write Xk;

Suppose now that ef = g(e). Then, by induction we can suppose that ei

is computed by Cei . In that case, the following WHILE-cons-free program com-
putes f.

read X1, ..., Xn;
Ce1;
X1g := Y;
Ce2;
X2g := Y;
.
.
.
Cek;
Xkg := Y;
Cg;
write Y;

Remark 1. It is well known that if f and g are Logspace, so is f ◦ g. Since the
output of functions are subterms of the inputs, we have a much easier proof of
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the composition. Furthermore, we use the construction throughout the paper.
This is why we give an explicit construction.

2.1 Strongly-Tail-Recursive Programs

We prove now Theorem 4. First of all, let us eliminate the let construction.

Proposition 3. Consider the program transformation that maps let x=e1 in e2
to e2[x ← e1]. It preserves the semantics of the program. Furthermore, if a
program is strongly-tail recursive, so is its transform.

As a consequence, we may consider w.l.o.g only programs without the let con-
struction.

For each definition, we build a WHILE-cons-free program that computes it. We
proceed by induction on the ordering ≺. For the sake of the proof, to avoid a
tedious case analysis, we suppose that for all symbols g ∈ ef, either g = f or
g ≺ f. In other words, we avoid mutual definitions.

For minimal elements, observe that their definitions are tail-recursive. So, one
applies Theorem 3 to get a WHILE-cons-free programs that computes them.

Now, we suppose that we are given an expression ef that computes f. We
suppose by induction that we have a program computing any function g �=
f involved in the definition of f. As a consequence, applying Proposition 2,
one gets for each composition of such functions some program that computes
it.

We now perform an induction on the structure of the definition of f. In the
following compiling procedure, we suppose (by induction) that we are given for
any sub-expression e some program read Xe1, . . . , Xen; Ce; writeY; where the Xei

are the variables of ei .
By compositions of pattern expression pc as well as destructors dc, we build

for each pattern p a code Pp ∈ WHILEcons−free that returns tt if the inputs
verify the pattern. We suppose given the code for the unification of variables in
patterns. So, after X ′

p :=p X , the variables in the patterns are supposed to have
their value after pattern matching.

Given an expression e, Table 1 gives rules to build the code De.

Table 1. Compilation rules

Dcase x of p1→e1,...,pk→ek Dif e1 then e2 else e3 Df(e1,··· ,en) Dg(e)
Pp1 ;
if Y
then X′

p1 :=p1 X; De1 ;
else Pp2 ;

if Y
then X′

p2 :=p2 X; De2 ;
...
X ′

pk
:=p3 X; Dek ;

Ce1 ;
if Y
then De2 ;
else De3 ;

Ce1 ;
X1 := Y;
Ce2 ;
X2 := Y;
...
Cek ;
Xk := Y;

Cg(e);
R := ff;
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What do these programs do? If the expression is f-free, that is if we reached
the end of the recursion, Y is assigned the value of the computation. In that case,
the flag variable R is turned to tt. Otherwise, it computes the arguments of the
next call of f, and continues the process.

So, the function f is computed by the following program:

read X1, · · · , Xn;
R := tt;
while R do
Def;
write Y;

2.2 Linear Programs

The rationale behind the compilation of linear programs is the following. In the
first part of the computation, we just compute the arguments of the intermediate
calls of f and forget the context in which they appear. At the end of the process,
one knows two crucial points.

First, one knows the exact number of nested calls of f, moreover, due to
Corollary 1, this number is polynomial in the size of the input. As a consequence,
it is representable in log-space. Second, one knows the value of the function f
on its terminating call.

In the second part, you just redo what has been said above except that at
each step you compute one less nesting of calls of f and reuse the last result of
the loop to compute the value of f in its full context.

Contrarily to what happened for strong-tail-recursion, we cannot get rid
off the let construction. Indeed, the transform does not preserve linearity. A
counter-example is the definition f(x) = case x of (0 → 0, s(x′) → let y =
f(x′) in g(y, y)) where g is an already defined binary function. So, don’t forget
we have to cope with let .

Proof. As above, we proceed by induction on the ≺ order. For minimal elements,
the definition is tail-recursive. For those, we have already seen that we have
a procedure. Suppose now that we are trying to compute function f whose
definition is f(x1, · · · , xn) = ef. As above, we suppose that there is no symbol
equivalent to f in ef (except for f of course!). We suppose that we have built for
any function g ≺ f some WHILE-cons-free code that computes it. Moreover, using
Proposition 2, we suppose that we are able to compute any expression composed
of such symbols.

Now, suppose we are given a functional term h(e) of level 1. It contains one
occurrence of f. It can be seen as C[f(e′)] where the context C can be seen as an
expression over the variables of h(e) plus an extra variable F that corresponds
to the call of f. We can suppose that for any of these expressions, we have
some code that computes them. We use a similar notation to that of the proof
above.
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To compute the value of the last call, we build a code analogous to what we
have done for strong-tail recursion. The rules are somewhat different.

– For the case construction, we use the construction of Table 1.
– The if case splits into two sub-cases. When lvlf(e1) = 0, we use the rule

of Table 1. The other case, is shown below.
– The let construction also splits into two parts that are considered be-

low.
– The last case correspond to the functional expressions. When the functional

expression has level 0, we use the rule of Table 1. The other case is presented
below.

Dif e1 then e2 else e3 Dlet v=e1 in e2 Dlet v=e1 in e2 DC[f(e′)]
when lvlf1(e1) = 1 when lvlf(e1) = 0 when lvlf(e1) = 1

De1
Ce1 ;
V := Y; De2

De1

Ce′
1
;

X1 := Y;
Ce′

2
;

X2 := Y;
...
Ce′

k
;

Xk := Y;

Given an expression e, we define now (by induction) a code Ee that computes
the value of f given that F contains the value of the sub-call of f.

Ecase x of p1→e1,...,pk→ek Eif e1 then e2 else e3 Elet v=e1 in e2

when lvlf(e1) = 0 when lvlf(e1) = 0
Pp1 ;
if Y
then X′p1 :=p1 X; Ee1 ;
else Pp2 ;

if Y
then X′p2 :=p2 X; Ee2 ;

...
X ′

pk
:=pk

X; Eek ;

Ce1 ;
if Y
then Ee2 ;
else Ee3 ;

Ce1 ;
V := Y;
Ee2 ;

EC[f(e′)] Eif e1 then e2 else e3 Elet v=e1 in e2

when lvlf(e1) = 1 when lvlf(e1) = 1

CC;

Ee1 ;
if Y
then Ce2 ;
else Ce3 ;

Ee1 ;
V := Y;
Ce2 ;
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We can now compute f by the following code:

read X1,0, . . . , Xn,0;
Xi := Xi,0; //a copy of the inputs
R := tt;
while R do
Def ; incr N;

done; N := pred N;
while N �= 0 do
Xi := Xi,0;
M = N;
while M �= 0 do
Def ; M := pred M;

done;
N := pred N;
Eef ; F := Y;

done;
Y := F;
writeY;

Some last words about this code. Our management of the counters N and M is
licit, even the incrementing, since we have a polynomial bound due to Proposi-
tion 1 on the two counters. We refer to Jones [17] who extensively discusses how
to carry this out.

3 Non-determinism

This part of the paper introduces some “non-determinism” to the languages.
To WHILE, we add a new command choose. We propose non-confluence as a
functional correspondence of this instruction.

Definition 11. Following Jones, to WHILEwe add the expression choose C1 C2
whose operational semantics is to evaluate either C1 or C2. A program induces
now a relation between inputs and outputs. We say that a decision problem f
is computed by a program f if for all inputs t, the value of f(t) is true iff one
execution of f on t reaches tt. We note WHILEn the set of programs with this
extra instruction. WHILEn-ptime denotes the set of (non deterministic) programs
working in polynomial time, etc.

Theorem 6 (Jones [17]).

1. WHILEn-ptime = NPtime;
2. WHILEn−log−space = NLogspace.

Definition 12. We consider here some FOFP programs without the confluence
property, that is, patterns may overlap each other. A normal form is one possible
result of the computation. Following Grädel and Gurevich [18], the value of any
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term is the maximal normal form of the term (for a given order on terms).
Notice that this includes the usual definition for decision problem by choosing
true > false. We add the superscript n to denote the fact that we include non-
deterministic programs.

Theorem 7.

1. WHILEn−cons−free = FOFPn−lin−cons−free = NLogspace;
2. WHILEn−rec−cons−free = FOFPn-cons-free = Ptime.

This latter fact is surprising as it breaks a similarity (similarity that holds for
logspace):

WHILEn−rec−cons−free

=

��

�= WHILEn−ptime =

��

NPtime

��
WHILErec−cons−free = WHILEptime = Ptime

This result is analogous to that of Cook [2] Th.2 p7. He gives a characterization
of Ptime by means of auxiliary pushdown automata working in logspace, that is
a Turing Machine working in logspace plus an extra (unbounded) stack. It is also
the case that the result holds whether or not the auxiliary pushdown automata
is deterministic.

3.1 Bound on FOFPn-Cons-Free

We propose a proof for FOFP-programs. The case of WHILE-programs is similar.
The key observation is that Proposition 1 remains true in the context of non-
confluent programs. As a consequence, following a call-by-value semantics, any
arguments in subcomputations are some subterms of the initial inputs. From
that, it is possible to use memoization, see [17]. The original point is that we
have to manage non-determinism.

So, the crucial point is that the arguments of functions are subterms of the
input and moreover, that the cardinality of this set is polynomial as was shown
in Proposition 1. A second point is that normal forms are also subterms of the
input. It means that, for each defined symbol, the induced relation can be stored
in polynomial space. This leads to a procedure where we remember the normal
forms of each (already computed) function on arguments and reuse it when
necessary.

Suppose we are given a program f which is n-cons-free. Given input t1, · · · , tn,
let us note I = {t � ti | i ≤ n}. We have �I ≤ O(|t1, · · · , tn|).

We consider a 3D table. The first dimension corresponds to F , the second
to IA (where A is the maximal arity of a symbol), that is the arguments of
functions. The third to I, the possible values of the relation. The entries of the
table are boolean, and T[g][t][v] is (intended to be) true iff g(t)+→v. This table
has a polynomial size w.r.t. the inputs.

Consider the following algorithm (at the beginning, the entries of table
T[g][t][v] are false):
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var r : Term ;
for i := 1 to |F | ∗ O( | t1 , . . . , tn |ˆA) ∗ O( | t1 , . . . , tn | ) do
for g in F do
for t in I ˆA do
for v in I do

r1 , . . . , rn := f i nd (g , t ) ;
for l := 1 to n do
T[ g ] [ t ] [ v ] := T[ g ] [ t ] [ v ] | | compute ( r i , t , v ) ;
end

end ;
end ;
end ;
end ;

find(g,t) is charged to give the list of all rules that can be applied on t. There
are finitely many of these. This can be done in linear time.

compute(ri,t,v) is charged to see if the rule ri given by find may lead to
value v. That is, to see if the subcalls (with the corresponding inputs) in r have
been already computed, choose for all of them the already computed values and
finally turns the table cell to true if one of these choices leads to the value v. This
process is easily proved polynomial by a simple induction on the construction of
the rule ri. So, the instructions inside the loop take polynomial time.

For each loop on i, one will fulfil some of the T [g][t][v]. As a consequence, the
bound on the exterior loop is enough to get the result. So, the fixpoint is reached
within a polynomial in the number of entries in the table. This algorithm works
in polynomial time, hence we obtain the following corollary:

Corollary 2. FOFPn−cons−free ⊆ Ptime.

Concerning the counterpart of the proof. In the case of Ptime, one may note
that FOFPcons−free ⊆ FOFPn−cons−free. As a consequence, w.r.t. Theorem 3, it
is Ptime complete.

3.2 FOFPn-Lin-Cons-Free

First, proving that WHILEnlogspace ( WHILEn−cons−free can be achieved following
Jones’s proof that WHILElogspace ( WHILEcons−free. Here, non-determinism plays
no special role.

For the case of non-deterministic linear programs, one may note that the rules
for the case analysis can be transformed to take into account the fact that more
than one pattern applies. At this point, use the choice operator to decide which
pattern to take.

As a consequence, the analysis of Section 2 can be used here. So, by the remark
at the beginning of the subsection, the global process can be performed within
NLogspace.

Acknowledgment. This work has been largely inspired by “life without cons” of
Jones.
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Abstract. Code obfuscation and software watermarking are well known tech-
niques designed to prevent the illegal reuse of software. Code obfuscation pre-
vents malicious reverse engineering, while software watermarking protects code
from piracy. An interesting class of algorithms for code obfuscation and soft-
ware watermarking relies on the insertion of opaque predicates. It turns out that
attackers based on a dynamic or an hybrid static-dynamic approach are either
not precise or time consuming in eliminating opaque predicates. We present an
abstract interpretation-based methodology for removing opaque predicates from
programs. Abstract interpretation provides the right framework for proving the
correctness of our approach, together with a general methodology for designing
efficient attackers for a relevant class of opaque predicates. Experimental evalua-
tions show that abstract interpretation based attacks significantly reduce the time
needed to eliminate opaque predicates.

1 Introduction

The aim of malicious reverse engineering of software is to understand the inner work-
ings of programs in order to identify vulnerabilities, to make unauthorized modifica-
tions or to steal the intellectual property of software. Code obfuscation is a well-known
low cost approach to prevent malicious reverse engineering of software [2, 3]. The basic
idea of code obfuscation is to transform programs so that the obfuscated programs are
so difficult to understand that reverse engineering becomes too expensive in terms of
resources or time. Software piracy refers to the illegal reproduction and distribution of
software applications, whether for business or personal use. The aim of software water-
marking is to dissuade illegal copying and reseal of programs. Software watermarking
is a program transformation technique that embeds a signature into the software in order
to encode some identifying information about it [4, 22].

1.1 The Problem

A predicate is opaque if its value is known a priori to a program transformation, while it
is difficult for attackers to deduce it [2]. Opaque predicates can be used both for obfus-
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cating and watermarking programs. In the case of code obfuscation, a class of obfuscat-
ing transformations known as control code obfuscators act by masking software control
flow. Control code obfuscators often rely on inserting opaque predicates. Consider for
example the insertion of a branch instruction controlled by an opaque predicate that
always evaluates true, i.e., the true path is always followed. Attackers are not aware
of the constantly true value of the opaque predicate, and have to take into account both
true and false paths. On the other side, Monden et al. [22] store the watermark in a
piece of dead code and then they make the watermark potentially reachable by insert-
ing a true opaque predicate whose false branch transfers the control to the dead code
containing the watermark. Therefore, a static analysis-based dead code removal does
not eliminate the watermark, while the dead code itself is never executed. A different
approach by Myles and Collberg [23] instead encodes the watermark in the constants
used in opaque predicates. The resilience of an opaque predicate to attacks measures
the resilience of the corresponding obfuscating/watermarking transformation. Here, we
consider opaque predicates from number theory [1, 5, 23] such as ∀x ∈ Z : n|f(x), i.e.,
the function f always returns a multiple of n. More in general, we consider opaque pred-
icates ∀x ∈ Z : f(x) ⊆ P , i.e., the result of the function f always satisfies the property
P . An attacker is a malicious user that wants to reverse engineer or copy a program for
unlawful purposes, thus to succeed it has to defeat expected software protection tech-
niques such as opaque predicate insertion. Once an opaque predicate is inserted in a
program, it is possible to further protect the code using transformations meant to mask
the opaque predicate itself. For example, hiding constant values by use of address com-
putations or using bit-level operations to hide arithmetic manipulations are obfuscating
transformations that mask the inserted opaque predicates. The de-obfuscation of these
additional transformations and the opaque predicates detection are problems that can
be studied independently. In the following we study a general and efficient methodol-
ogy for disclosing opaque predicates, assuming that potential additional transformations
have already been handled. We introduce a novel and efficient methodology of attack,
based on Cousot and Cousot’s abstract interpretation technique [7, 9], for eliminating
opaque predicates. The present approach builds over the semantics-based view to code
obfuscation introduced in [10, 11].

1.2 Main Results

We analyze two different approaches to opaque predicates detection. The first one is
based on purely dynamic information, while the second one is based on hybrid sta-
tic/dynamic information [16]. Experimental evaluations on a limited set of inputs show
that a dynamic attack removes any opaque predicate, but it has the drawback of classify-
ing many predicates as opaque, while they are not. Thus, dynamic attacks do not provide
a trustful solution. Randomized algorithm may be used to eliminate opaque predicates,
in this case the probability of precisely detecting an opaque predicate can be increased
by augmenting the number of tries [14]. However randomized algorithms do not give
an always trustful solution, but an answer that has an high probability of being precise.
On the other hand, experimental evaluations on hybrid static/dynamic attacks show that
breaking a single opaque predicate is rather time consuming, and may become unfea-
sible. We then introduce a novel methodology, based on formal program semantics and
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semantics approximation by abstract interpretation, to detect and then eliminate opaque
predicates. Experimental evaluations show the efficiency of this new method of attack.

Attackers are malicious users that observe the behavior of the obfuscated program
at different levels of abstraction with respect to the real program execution. The basic
idea is to model attackers as abstract interpretations of the concrete program behaviour,
i.e., the concrete program semantics. In this framework, an attacker is able to break an
opaque predicate when the abstract detection of the opaque predicate is equivalent to its
concrete detection. For opaque predicates as ∀x ∈ Z : n|f(x) and ∀x ∈ Z : f(x) ⊆ P ,
this can be formalized as a completeness property of the underlying abstraction with
respect to the function f . Completeness for an abstraction A with respect to some se-
mantic function f means that no loss of precision is accumulated in the abstract com-
putation of f on A with respect to its concrete computation. Abstract interpretation
provides a systematic methodology for minimally refining an abstraction in order to
make it complete for a given function. Thus, it turns out that completeness domain re-
finements provide here a systematic de-obfuscation technique that drives the design of
abstractions, i.e., attackers, for disclosing opaque predicates.

2 Background

Notation. If f : Xn → Y is any n-ary function then its pointwise extension fp :
℘(X)n → ℘(Y ) to the powerset is defined as fp(S1, ..., Sn) def= {f(x1, ..., xn) | 1 ≤
i ≤ n, xi ∈ Si}. 〈L,≤,∨,∧,�,⊥〉 denotes a complete lattice with ordering ≤, least
upper bound (lub)∨, greatest lower bound (glb)∧, greatest element� and least element
⊥. Given an ordered set L the downward closure of S ⊆ L is ↓ S

def= {x ∈ L|∃y ∈
S.x ≤ y}, while the upward closure ↑ is dually defined. For x ∈ L, ↓ x is a shorthand
for ↓ {x}. Given S ⊆ L, max(S) def= {x ∈ S | ∀y ∈ S.x ≤ y ⇒ x = y} is the set
of maximal elements of S. Given any two functions f, g : X → L, f � g denotes
pointwise ordering, namely for any x ∈ X , f(x) ≤ g(x).

Abstract Interpretation. The basic idea of abstract interpretation is that the program
behaviour at different levels of abstraction is an approximation of its formal semantics.
The (concrete) semantics of a program is computed on the (concrete) domain 〈C,≤C〉,
i.e., a complete lattice which models the values computed by programs. The partial
ordering ≤C models relative precision between concrete values. An abstract domain
〈A,≤A〉 is a complete lattice which encodes an approximation of concrete program
values. Abstract domains can be related to each other w.r.t. their relative degree of
precision. Abstract domains are specified either by Galois connections (GCs), i.e., ad-
junctions, or by (upper) closures operators [7, 9]. Two complete lattices C and A form
a Galois connection (C, α, γ, A), when α : C → A and γ : A → C form an adjunc-
tion, namely ∀a ∈ A, ∀c ∈ C : α(c) ≤A a ⇔ c ≤C γ(a). α and γ are called,
respectively, abstraction and concretization maps. An (upper) closure operator on C,
or simply a closure, is an operator ρ : C → C which is monotone, idempotent, and
extensive. We denote by uco(C) the set of closures on C. When C is a complete lat-
tice then 〈uco(C),�,�,�, λx.�, λx.x〉 is a complete lattice as well, where ρ1 � ρ2 if
and only if ρ2(C) ⊆ ρ1(C), meaning that the abstract domain specified by ρ1 is more
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precise than the abstract domain specified by ρ2. Let us recall that each closure ρ is
uniquely determined by the set of its fixpoints, given by its image ρ(C). A set X ⊆ C
is the set of fixpoints of a closure operator if and only if X is a Moore family of C,
i.e., X = M(X) def= {∧S|S ⊆ X}, where ∧∅ = � ∈M(X). Given a GC (C, α, γ, A),
ρ = γ ◦ α is the closure corresponding to the abstract domain A.

Let (C, α, γ, A) be a GC, f : C → C a concrete function and f � : A → A an
abstract function. f � is a sound, i.e., correct, approximation of f if α ◦ f ≤A f � ◦ α.
When the soundness condition is strengthened to equality, i.e., when α ◦ f = f � ◦ α,
the abstract function f � is a complete approximation of f in A. This means that no loss
of precision is accumulated in the abstract computation through f �. Given A ∈ uco(C)
and a semantic function f : C → C, the notation fA def= α ◦ f ◦ γ denotes the best
correct approximation of f in A [9]. It has been proved [12] that, given an abstraction
A, there exists a complete approximation of f : C → C in A if and only if the best
correct approximation fA is complete. This means that completeness is an abstract
domain property, namely that it depends on the structure of the abstract domain only. In
particular, when an abstract domain is specified by a closure ρ ∈ uco(C), we have that
ρ is complete for f iff ρ◦f ◦ρ = ρ◦f (soundness is instead encoded by ρ◦f � ρ◦f ◦ρ).
It turns out that an abstract domain ρ ∈ uco(C) is complete for f if ∀x ∈ ρ(C):
max(f−1(↓ x)) ⊆ ρ(C), i.e., if ρ is closed under maximal inverse image of f . This
leads to a systematic way for minimally refining an abstract domain in order to make
it complete for a given semantic function [12]. The complete refinement of a domain ρ
with respect to a function f is given by Rf (ρ) def= gfp(λX. ρ�M(∪y∈Xmax(f−1(↓ y))).
It turns out that Rf (ρ) returns exactly the most abstract domain extending ρ and which
is complete for f [12]. Thus, the completeness refinement adds the minimal amount
of information needed to make the abstract domain complete. When f has more then
one argument, for example when f : C × C → C, the maximal inverse image, i.e.,
f−1(x, y) is obtained by the union of the maximal inverse images of f for each fixed
value of x and y [12]. For a set F of semantic functions, RF (ρ) denotes the complete
refinement of ρ for any function f ∈ F .

Opaque Predicates. A predicate is opaque if its outcome is known at embedding
time, but it is hard for an attacker to deduce it [2, 3]. The basic idea is that the in-
sertion of opaque predicates in a program makes the program control flow difficult
for an attacker to analyze. Opaque predicates find interesting applications not only in
code obfuscation techniques [15], but also in software watermarking [23] and tamper-
proofing [24]. There exist two major kinds of opaque predicates: true opaque predi-
cates, denoted by PT , that always evaluate true, and false opaque predicates, denoted
by PF , that always evaluate false . Opaque predicates can be derived from number the-
ory [3], alias analysis [2], concurrency [6], etc. We focus here on opaque predicates
based on number theory of the form ∀x ∈ Z : n|f(x). These predicates are applied
in some major software protection techniques as code obfuscation [3], software wa-
termarking [23], tamper-proofing [24] and secure mobile agents [19]. Moreover, this
class of opaque predicates is used in recent implementations such as PLTO [25] — a bi-
nary rewriting system that transforms a binary program preserving the functionality —
LOCO [17] — a tool for binary obfuscating and de-obfuscating transformations — and
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SANDMARK [5] — a tool for software watermarking, tamper proofing and code obfus-
cation of Java programs.

3 Dynamic Attack

Dynamic attackers execute programs with several (but of course not all) different inputs
and observe the paths followed after each conditional jump. Thus, a dynamic attacker
classifies a conditional jump as controlled by a false/true opaque predicate if, during
these executions, the false/true path is always taken. Therefore, a dynamic attacker de-
tects all the executed opaque predicates, but, due to the limited set of inputs considered,
it may classify a predicate as opaque while it is not, called a false negative. Let us
measure the false negative rate of a dynamic attacker. We execute the SPECint2000
benchmarks (without adding opaque predicates) with the reference inputs, and then we
observe the conditional jumps. We use DIOTA1 [18] to identify conditional jumps that
always follow the true path, the false path or take both of them.

Table 1. Execution after conditional jumps

The benchmarks are listed in Table 1. For each benchmark, the percentage of reg-
ular conditional jumps that look like false/true opaque predicates are annotated in the
first/second column, while the percentage of regular conditional jumps are reported in
the third column. Benchmarks do not contain opaque predicates, so that the opaque
predicates detected by dynamic attack are false negatives. This experimental evalua-
tions show that a dynamic attacker has an average of false negative rate of 39% and
22%, respectively for false and true opaque predicates. An attacker can improve these
results using its knowledge of the program functionality in order to generate different
inputs that are likely to execute different program paths. This will be very time con-
suming. Another way is to generate dynamic test data to improve the condition/decision
coverage (CDC)2. For complex programs, the CDC is at most 58% [20], so 42% of all
conditions will be seen as opaque predicates or dead code by the attacker which is of
course incorrect. This leads us to conclude that dynamic attacks are too imprecise.

1 DIOTA: a dynamic instrumentation tool which keeps a running program unaltered at its original
location and generate instrumented code on the fly somewhere else.

2 Condition/decision coverage measures the percentage of conditional jumps that are executed
true at least once and false at least once.
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4 Brute Force Attack

In this section we study an hybrid static/dynamic brute force attack acting on assembly
basic blocks3, where the instructions of the opaque predicate are statically identified
(static phase) and are then executed on all possible inputs (dynamic phase). Let us con-
sider the following opaque predicate ∀x ∈ Z : 2|(x2 + x). Let us remark that the
implementation of this opaque predicate decomposes the function x2 + x into elemen-
tary functions such as square x2 and addition x + y. We make the assumption that the
instructions (that is, elementary functions) corresponding to an opaque predicate are al-
ways grouped together, i.e., there are no program instructions between them. The static
phase aims at identifying the instructions corresponding to an opaque predicate. Thus,
for each conditional jump j the attack considers the instruction i immediately preceding
j. The dynamic phase then checks whether i and j give rise to an opaque predicate. If
this is the case the predicate is classified as opaque. Otherwise, the analysis proceeds
upward by considering the next instruction preceding i, until an opaque predicate is
found or the instructions in the basic block terminate. In this latter case, the predicate
is not opaque. The computational effort, measured as number of steps, of the attack
is n2 ∗ (2w)r, where n is the number of instructions of the opaque predicate, r is the
number of registers and w is the width of the registers used by the opaque predicate.
Consider for example the above true opaque predicate compiled for a 32-bit architec-
ture. The predicate is executed with all possible 232 inputs. This compiled code is then
executed under the control of GDB, a well known open-source debugger4, with all 232

inputs. In particular 2|(x2 + x) can be written in five x86 instructions, so that for this
architecture the computational effort to break this opaque predicate will be 52 ∗ 264.
During the hybrid attack, two variables are needed as input for the addition, so that
there are at most 2 registers taken as input during the attack, i.e. r=2, and the width of
these registers is 32 bits, i.e. w = 32.

It would be interesting to measure the time needed by this attack to detect an opaque
predicate. Let us consider the opaque predicate ∀x ∈ Z : 2|(x + x) and measure the
time needed to detect it. In assembly, this opaque predicate in a 16-bit environment con-
sists of three instructions. The execution under control of GDB of these three assembly
instructions with all 216 inputs takes 8.83 seconds on a 1.6 GHz Pentium M proces-
sor with 1 GB of main memory running RedHat Fedora Core 3. In this experimental
evaluation, the static phase has been performed by hand, meaning that the starting in-
struction of the opaque predicate was given. This leads us to conclude that the hybrid
static/dynamic approach is precise although it is noticeably time consuming.

5 Breaking Opaqueness by Abstract Interpretation

We introduce an approach based on abstract interpretation for detecting opaque pred-
icates. This novel technique leads to a formal characterization of a class of attack-
ers that are able to break a specific type of commonly used opaque predicates, i.e.,

3 A basic block is a sequence of instructions with a single entry point, single exit point, and no
internal branches.

4 http://www.gnu.org/software/gdb/
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∀x ∈ Z : n|f(x). This result can then be generalized to a wider class of opaque pred-
icates, i.e., ∀x ∈ Z : f(x) ⊆ P where P is a generic property of integer numbers.
In this case, we provide a methodology for designing efficient attackers. Experimental
evaluations show how this abstract interpretation-based approach significantly reduces
the computational effort of the attacker.

5.1 Modeling Attackers

Attackers have different precision degrees, according to the accuracy they have in ob-
serving program behaviours. We show that abstract interpretation turns out to be a suit-
able framework for modeling attackers and for classifying them according to their level
of precision [10, 11]. Let 〈℘(Z),⊆〉 be the concrete domain for an integer program vari-
able. An attacker can be modeled by an abstract domain A ∈ uco(℘(Z)), which may
precisely represent the level of abstraction of an attacker. In the following, A denotes
an abstract domain with partial ordering relation ≤A, abstraction/concretization maps
αA : ℘(Z)→ A and γA : A→ ℘(Z). For example, the following well-known abstract
domains Sign =

{
Z, Z≥0, Z≤0, 0, ∅

}
and Parity =

{
Z, even , odd , ∅

}
can model

different attackers. Modeling attackers by abstract domains allows us to compare them
with respect to their level of abstraction. Consider two attackers A1, A2 ∈ uco(℘(Z)).
If A2 is an abstraction of A1, i.e., A1 � A2, then the attacker A1 is more precise (i.e.,
concrete) than the attacker A2 in observing the obfuscated program. In our model, an
attacker A breaks an opaque predicate when the abstract detection of the opaque pred-
icate is equivalent to its concrete detection. Abstract domains can encode a significant
approximation of the concrete domain. Accordingly, we will show that abstract detec-
tion of opaque predicates may result significantly simpler.

Attackers for Predicates n|f(x). Let us consider numerical true opaque predicates of
the form: ∀x ∈ Z : n|f(x), namely the function f : Z→ Z always returns a value that
is a multiple of n ∈ Z. This class of opaque predicates is used in major obfuscating tools
such as SANDMARK [5] and LOCO [17], and in the software watermarking algorithm
by Arboit [1], recently implemented by Collberg and Myles [23].

In order to detect that the predicate n|f(x) is opaque one needs to check the con-
crete test CTf def= ∀x ∈ Z : f(x) ∈ nZ, where nZ denotes the set of integers that
are multiples of n ∈ Z. Our goal is to devise an abstract interpretation-based method
which allows to perform the test of opaqueness for f on a suitable abstract domain. We
are therefore interested in abstract domains which are able to represent precisely the
property of being a multiple of n, i.e., abstract domains A ∈ uco(℘(Z)) such that there
exists some an ∈ A such that γA(an) = nZ. Let f � : A → A be an abstract function
that approximates f on A. Then, the abstract test on A is defined as follows:

AT f�

A
def= ∀x ∈ Z : f �(αA({x})) ≤A an

Definition 1. AT f�

A is sound (complete) when AT f�

A ⇒CT f (AT f�

A ⇔CT f ).

When AT f�

A is complete we also say that the attack 〈A, f �〉 (or simply A when f � is
clear from the context) breaks the opaque predicate ∀x ∈ Z : n|f(x).
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Theorem 1. Consider A such that there exists an ∈ A: γA(an) = nZ, then:

(1) If f � is sound approximation of f on the singletons, that is ∀x ∈ Z, αA({f(x)})
≤A f �(αA({x})), then AT f�

A is sound.
(2) If f � is complete approximation of f on the singletons, that is ∀x ∈ Z, αA({f(x)})

= f �(αA({x})), then AT f�

A is complete.

Thus, the key point is to design a suitable abstract domain A together with a complete
approximation f � of f .

Abstract Functions. We already observed in Section 4 that a function f : Z → Z

is decomposed into elementary functions, i.e. assembly instructions within some ba-
sic block. Following the same approach, let us assume that the function f can be ex-
pressed as a composition of elementary functions, namely f = λx.h(g1(x, ..., x), ..., gk

(x, ..., x)) where h : Zk → Z and gi : Zni → Z. More in general, each gi can be further
decomposed into elementary functions. For example, f(x) = x2 + x is decomposed as
h(g1(x), g2(x)) where h(x, y) = x+y, g1(x) = x2 and g2(x) = x. Let us consider the
pointwise extensions of the elementary functions, which are still denoted, with a slight
abuse of notation, by h : ℘(Z)k → ℘(Z) and gi : ℘(Z)ni → ℘(Z), and let us denote
their composition by F

def= λX.h(g1(X, ..., X), ..., gk(X, ..., X)) : ℘(Z) → ℘(Z). For
example, for the above decomposition f(x) = x2 + x = h(g1(x), g2(x)), we have that
F : ℘(Z) → ℘(Z) is as follows: F (X) = {y2 + z | y, z ∈ X}. Observe that F does
not coincide with the pointwise extension fp of f , e.g., F ({1, 2}) = {2, 3, 5, 6} while
fp({1, 2}) = {2, 6}. Let us also notice that F on singletons coincides with f , namely
for any x ∈ Z, F ({x}) = f(x). Thus, the concrete test CTf can be equivalently for-
mulated as ∀x ∈ Z : F ({x}) ⊆ nZ.

Let A ∈ uco(℘(Z)) be an abstract domain such that there exists some an ∈ A
with γA(an) = nZ. The attacker A approximates the computation of the function F :
℘(Z)→ ℘(Z) in a step by step fashion, meaning that A approximates every elementary
function composing F . Thus, the abstract function F � : A → A is defined as the
composition of the best correct approximations hA and gA

i on A of the elementary
functions, namely:

F �(a) def= αA(h(γA(αA(g1(γA(a), ..., γA(a)))), ..., γA(αA(gk(γA(a), ..., γA(a))))))

When the abstract test AT F �

A for F � on A holds, the attacker modeled by the abstract
domain A classifies the predicate n|f(x) as opaque. It turns out that F � is a correct ap-
proximation of F on A, namely αA ◦F �A F � ◦αA, and this guarantees the soundness
of the abstract test AT F �

A .

Corollary 1. AT F �

A is sound.

Consider for example the opaque predicate ∀x ∈ Z : 3|(x3−x), and the abstract domain
A3+ in the figure below. A3+ precisely represents the property of being a multiple of 3,
i.e. 3Z, and its negation, i.e. Z � 3Z.
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Z
��� ���

�

3Z Z � 3Z

∅

��� ����

In this case, f(x) = x3 − x = h(g1(x), g2(x)) where h(x, y) = x − y, g1(x) = x3

and g2(x) = x, so that F : ℘(Z) → ℘(Z) is given by F (X) = {y3 − z | y, z ∈ X}.
Hence, it turns out that F �(3Z) = 3Z while F �(Z � 3Z) = Z. Here, the abstract
test AT F �

A3+
is sound but not complete, because F � : A3+ → A3+ is a sound but not

complete approximation of f on the singletons. In fact, for {2} ∈ ℘(Z), it turns out that
αA3+({f(2)}) = αA3+({6}) = 3Z while F �(αA3+({2})) = F �(Z � 3Z) = Z. Thus
the abstract test AT F �

A3+
, i.e., ∀x ∈ Z : F �(αA3+({x})) ≤ 3Z does not hold even if

CT f does. Thus, in general AT F �

A is sound but not complete, meaning that the attacker

〈A, F �〉 is not able to break the opaque predicate ∀x ∈ Z : n|f(x).
Recall that abstract domain completeness is preserved by function composition [12],

i.e. if an abstract domain is complete for f and g then A is complete for f ◦ g as well.
As a consequence, if an abstract domain A is complete for the elementary functions
h and gi that decompose F then A is complete also for their composition F . It turns
out that completeness of an abstract domain A w.r.t. the elementary functions compos-
ing F guarantees that the attacker A is able to break the opaque predicate ∀x ∈ Z :
n|f(x).

Corollary 2. If A is complete for the elementary functions h and gi composing F then
〈A, F �〉 breaks the opaque predicate ∀x ∈ Z : n|f(x).

Let us consider the opaque predicate ∀x ∈ Z : 3|(x3 − x) and the abstract domain
3-arity represented in the following figure.

Z
���� �����

3Z 1 + 3Z 2 + 3Z

∅

���� 					

The function f(x) = x3− x is decomposed as h(g1(x), g2(x)) where h(x, y) = x− y,
g1(x) = x3 and g2(x) = x. It turns out that the abstract domain 3-arity is complete
for the pointwise extensions of h, g1 and g2, i.e. λ〈X, Y 〉.X − Y , λX.X3 and λX.X ,
and therefore, by Corollary 2, the attacker 3-arity is able to break the opaque predicate
∀x ∈ Z : 3|(x3 + x).

Lemma 1. 3-arity is complete for λX.X3, λX.X and λ〈X, Y 〉.X − Y .

Experimental Results. A prototype of the above described attack based on the abstract
domain Parity has been implemented using LOCO [17], a x86 tool for obfuscation/de-
obfuscation transformations which is able to insert opaque predicates. This experimen-
tal evaluation has been conducted on the aforementioned 1.6 GHz Pentium M-based
system. Each program of the SPECint2000 benchmark suite is obfuscated by inserting
the following true opaque predicates: ∀x ∈ Z : 2|(x2 + x) and ∀x ∈ Z : 2|(x + x).
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It turns out that Parity is complete for addition, square and identity function, thus by
Corollary 2, the abstract domain Parity models an attacker that is able to break these
opaque predicates. In the obfuscating transformation each basic block of the input as-
sembly program is split into two basic blocks. Then, LOCO checks whether the opaque
predicate can be inserted between these two basic blocks: a liveness analysis is used
here to ensure that no dependency is broken and that the obfuscated program is function-
ally equivalent to the original one. In particular, liveness analysis checks that the regis-
ters and the conditional flags affected by the opaque predicate are not live in the program
point where the opaque predicate will be inserted. Moreover, our tool also checks by
a standard constant propagation whether the registers associated to the opaque predi-
cate are constant or not. If constant propagation detects that these are constant then the
opaque predicate can be trivially broken and therefore is not inserted. Although liveness
analysis and constant propagation are noticeably time-consuming, they are nevertheless
necessary both to certificate functional equivalence between original and obfuscated
program and to guarantee that the opaque predicate cannot be trivially broken by con-
stant propagation. The algorithm used to detect opaque predicates is analogous to the
brute force attack algorithm described in Section 4. Fig. 1 describes the basic block, by
pseudo-code, which implements the opaque predicate ∀x ∈ Z : 2|(x2 + x).

Fig. 1. Breaking ∀x ∈ Z, 2|(x2 + x)

Let us describe how our de-obfuscation algorithm works. For each conditional jump
j, jump if zero in the figure, we consider the instruction i which immediately
precedes j, cond=z%2 in the figure. The instructions j and i are abstractly executed
on each value of the abstract domain (i.e. the attack). In the considered case of the
attack modeled by Parity, both non-trivial values even and odd are given as input to
cond=z%2. When z evaluates to even , cond evaluates to 0 and therefore the true
path is followed. On the other hand, when z is evaluated to odd, cond evaluates to 1
and the false path is taken. Thus, i does not give rise to an opaque predicate, so that we
need to consider the instruction z=x+y which immediately precedes i. The instruction
z=x+y is binary and therefore we need to consider all the values in Parity×Parity. This
process is iterated until an opaque predicate is detected or the end of the basic block
is reached. In our case, the opaque predicate is detected when the algorithm analyses
the instruction y=x*x because whether x is evaluated to even or odd the true path
is taken. The number of computational steps needed for breaking one single opaque
predicate by an attack based on an abstract domain A is n2 ∗ dr, where n is the number
of instructions composing the opaque predicate, r is the number of registers used by
the opaque predicate and d is the number of abstract values in A. The reduction of the
computational effort of the abstract interpretation-based attack with respect to the brute
force attack can therefore be huge since the abstract domain can encode a very coarse



Opaque Predicates Detection by Abstract Interpretation 91

approximation. In the considered example, the number of steps for detecting ∀x ∈ Z :
2|x + x through the abstract domain Parity results to be 32 ∗ 22. In fact, the opaque
predicate consists of 3 instructions, uses 2 registers and Parity has 2 non-trivial abstract
values. In Table 2 we show the results of the obfuscation/de-obfuscation process on the
SPECint2000 benchmark suite. The first and second columns report respectively the
number of opaque predicates inserted in each benchmark and the time needed for such
obfuscation, while the third column lists the time needed to de-obfuscate. It turns out
that the Parity-based de-obfuscation process is able to detect all the inserted opaque
predicates. Let us recall that the brute force attack took 8.83 seconds to detect only one
occurrence of the opaque predicate ∀x ∈ Z : 2|x+x in a 16-bit environment, while the
abstract interpretation-based de-obfuscation attack took 8.13 seconds to de-obfuscate
66176 opaque predicates in a 32-bit environment.

Table 2. Timings of obfuscation and de-obfuscation

6 Designing Domains for Breaking Opaque Predicates

This section shows how the completeness domain refinements can be used to derive
models of attackers which are able to break a given opaque predicate. Let us consider
the opaque predicate ∀x ∈ Z : 3|(x3 − x) and the attacker A3

def= {Z, 3Z}, that is the
minimal abstract domain which represents precisely the property of being a multiple
of 3. Recall that the function f(x) = x3 − x is decomposed as h(g1(x), g2(x)) where
h(x, y) = x−y, g1(x) = x3 and g2(x) = x. It turns out that A3 is not able to break the
above opaque predicate, since F � : A3 → A3 is not a complete approximation of f on
singletons. In fact, consider {2} ∈ ℘(Z), it turns out that αA3({f(2)}) = αA3({6}) =
3Z while F �(αA3({2})) = F �(Z) = Z. Corollary 2 does apply here because A3 is
complete for g1 and g2 but not for h. However, as recalled in Section 2, completeness
can be obtained by a domain refinement. We thus systematically transform A3 by the
completeness domain refinement w.r.t. h = λ〈X, Y 〉.X − Y . We obtain the abstract
domain Rh(A3) that models an attacker which is able to break ∀x ∈ Z : 3|(x3 −
x). As recalled in Section 2, the application of the completeness domain refinement
adds to A3Z the maximal inverse images under h of all its elements until a fixpoint is
reached, that is for any fixed X ⊆ Z and a belonging to the current abstract domain, we
iteratively add the following sets of integers: max{Z ⊆ Z | Z −X ⊆ a}. It is not hard
to verify that the following elements provide exactly the minimal amount information
to add to A3 in order to make it complete for h.
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– if X = {0} then: max{Z ⊆ Z | Z −X ⊆ 3Z} = 3Z

– if X = {1} then: max{Z ⊆ Z | Z −X ⊆ 3Z} = 1 + 3Z

– if X = {2} then: max{Z ⊆ Z | Z −X ⊆ 3Z} = 2 + 3Z

Therefore, Rh(A3) = {Z, 3Z, 1+3Z, 2+3Z, ∅} = 3-arity . Let us notice that we were
able to systematically obtain the attacker 3-arity , which is able to break the opaque
predicate, through a completeness refinement of the minimal abstract domain A3.

It turns out that given n ∈ N, the abstract domain n-arity , in the figure below, is
complete for addition, difference and, for k ∈ N, k-power (i.e., λX.Xk). Therefore, by
Corollary 2, the attacker n-arity breaks the opaque predicates ∀x ∈ Z, n|f(x), where
f is a polynomial function. Observe that the abstract domain n-arity is an instance of
Granger’s domain of congruences [13].

Theorem 2. The attacker n-arity breaks all the opaque predicates of the following
form: ∀x ∈ Z : n|f(x), where f(x) is a polynomial function.

⊥

Z

nZ . . . (n − 1) + nZ2 + nZ1 + nZ

6.1 Breaking Opaque Predicates P (f(x))

Let us now consider the wider class P (f(x)) of opaque predicates where each predicate
has the following form: f(x) ⊆ P , with P ⊆ Z and f : Z→ Z. It is possible to general-
ize the results of the previous sections, in particular Theorem 1, Corollary 1 and Corol-
lary 2, to opaque predicates in P (f(x)). This is simply done by replacing the property
nZ of being a multiple of n, with a general property P over integers. This allows us to
provide a formal methodology for designing abstract domains that model attackers able
to break opaque predicates in P (f(x)). Let ∀x ∈ Z : f(x) ⊆ P be an opaque predicate
and let us consider the minimal abstract domain AP that represents precisely the prop-
erty P , i.e., AP

def= {Z, P}. As above, we assume that the function f can be expressed as
a composition of elementary functions, namely f = λx.h(g1(x, ..., x), ..., gk(x, ..., x))
where h : Zk → Z and gi : Zni → Z. Then, we compute the completeness do-
main refinement of AP w.r.t. the set of elementary functions composing f , namely
Rh,g1,...,gk

(AP ). It turns out that the refined domain is able to break the opaque predi-
cate ∀x ∈ Z : f(x) ⊆ P .

Theorem 3. The attacker modeled by the abstract domain Rh,g1,...,gk
(AP ) breaks the

opaque predicate ∀x ∈ Z : f(x) ⊆ P .

Thus, completeness domain refinements provide here a systematic methodology for
designing attackers that are able to break opaque predicates of the form: ∀x ∈ Z :
f(x) ⊆ P .

The previous result is independent from the choice of the concrete domain Z and can
be extended to a general domain of computation Dom.
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Corollary 3. Consider an opaque predicate ∀x ∈ Dom: f(x) ⊆ P , where f : Dom
→ Dom, f = h(g1(x, ..., x), ..., gk(x, ..., x)), and P ⊆ Dom. The abstract domain
Rh,g1,...,gk

({Dom,P}) is able to break opaque predicate.

7 Conclusion and Future Work

In this work we propose an abstract interpretation-based approach to detect opaque
predicates. It turns out that, considering opaque predicates of the form: ∀x ∈ Z :
n|f(x), the ability of an attacker, i.e., an abstract domain, to break opaque predicates
can be formalized as a completeness problem w.r.t. function f . Consequently complete-
ness domain refinement can be used to derive efficient attackers. In particular it turns
out that the abstract domain n-arity breaks the opaque predicate ∀x ∈ Z : n|f(x),
where n ranges over N and f is a polynomial function. This result is then generalized
to a wider class of opaque predicates of the form ∀x ∈ Z : f(x) ⊆ P , where the at-
tacker able to break the opaque predicate is obtained by completeness refinement of the
abstract domain AP = {Z, P}.

The insertion of an opaque predicate code creates a path that is never taken. Notice
that when the false path of a true opaque predicate contains another opaque predicate
the degree of obfuscation of the transformation increases. The two opaque predicates
interact with each other, and this dependence adds more confusion in the understanding
of the original control flow of the program. Thus the insertion of dependent opaque
predicates can be seen as a novel obfuscation technique.

Fig. 2. Dependent opaque predicate

Consider for example the true opaque predicates P1 : ∀x ∈ Z : 2|(x2 + x) and
P2 : ∀x ∈ Z : 3|(x3 − x) that interact with each other as depicted in the above figure.
On the left-hand side we have the opaque predicate P1, while on the right-hand side
we have P2, expressed in terms of elementary functions, i.e., assembly instructions.
Observe that the false branch of predicate P1 enters the second basic block of predicate
P2 and vice versa. The attacker modeled by the abstract domain Parity should be able
to break opaque predicate P1. The problem is that Parity cannot break P2 and therefore
we have an incoming edge on the second basic block of opaque predicate P1 coming
from P2. This gives the idea of why we are no longer able to break opaque predicate P1
with the Parity domain. Therefore when there are opaque predicates that interact with
each other the attacker needs to take into account these dependencies. Our guess is that
a suitable attacker to handle this situation could probably be obtained by combining the
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abstract domains breaking the individual opaque predicates. The main problem is that
one opaque predicate which is not breakable by our technique could protect breakable
opaque predicates by interacting with these opaque predicates.

It would be also interesting to consider abstract domains that are more complex than
the ones considered so far. Program properties that can be studied only on more complex
domains could lead to the design of novel opaque predicates. Since these properties
derive from a more complex analysis the corresponding opaque predicates should be
more resilient to attacks. Consider for example the polyhedral abstract domain [8] and
the abstract domain of octagons [21] for discovering properties of numerical variables.

Acknowledgments. The authors would like to thank the Fund for Scientific Research -
Belgium - Flanders (FWO) and Ghent University for their financial support.
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Abstract. We present DO-Casl, a new member of the CASL family of
specification languages. It is an extension of Casl-Ltl and it supports
a methodology for conveniently writing loose specifications of observers
on dynamic sorts. The need for such constructs arose during the de-
velopment of a CASL library for distributed systems. Indeed, we have
frequently used the same pattern of specification, in order to solve a gen-
eralization of the frame problem while using observers. The constructs
we propose make the resulting specifications more readable, concise and
maintainable. The semantics of our extension is given by reduction to
standard Casl-Ltl, which is, in turn, reducible to standard Casl when-
ever temporal logic is not used. A small prototype of the pre-processor
from DO-Casl to Casl-Ltl has been implemented as well.

1 Introduction

Middleware is widely and successfully used to support programmer productivity,
by providing solutions to the most common tasks and abstractions of low-level
concepts. Many software projects are developed by writing mainly “glue code”,
connecting the functionalities made available from middleware. Thus, the use-
fulness of a programming language or environment is greatly influenced by the
quality and quantity of available libraries.

We argue that this is also true for specification languages. That is, besides
libraries for standard datatypes (such as lists, sets or integers), software speci-
fications also need libraries for middleware primitives. This way, the developer
is lifted from the burden of axiomatization of components that can sometimes
be very complex. Moreover, they are part of the context, not to be implemented
anew for each system development.

Our work stems from the definition of a Casl-Ltl library for decentralized
distributed systems.

We decided to use one of the Casl family of languages, because of its large
acceptance in the scientific community. Among them, we selected Casl-Ltl, as
it provides an intuitive representation of label transition systems and hence of
dynamic systems.

M. Johnson and V. Vene (Eds.): AMAST 2006, LNCS 4019, pp. 96–110, 2006.
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Our library supports a model driven development1: our specifications abstract
away from concrete middleware to propose coherent sets of functionalities which
are implemented, in most cases, by several infrastructures. Technically, this
means that our specifications are loose. In order to allow different implemen-
tations and to get flexibility for further extensions of each given specifications
by other primitives, we adopt an observer oriented style of specification. Ob-
servers are used to hide details of the internal states, which are only partially
known in this layer of abstraction. Since we assume our knowledge of the needed
observers to be incomplete, we do not deduce equality of two states from all the
current observers yielding the same result on both.

Though our specifications are loose, we want to state the observable properties
of the primitives, for the user to build upon them. Therefore, in this context loose
does not mean underspecified.

For instance, in a specification of the primitives for connection to, and dis-
connection from the network, we want to axiomatize not only that
immediately after a connection (disconnection) the system is connected (dis-
connected), but also that each connection is standing till the next (explicit)
disconnection.

This is a very simple example of a common problem. It is, indeed, often the
case that only a small subset of the transitions may affect the result of an ob-
server. Therefore, the specifier should explicitly axiomatize the frame assumption
(which, roughly speaking, is “nothing changes unless explicitly required”) for the
observers, in order to be able to deduce that their results are unaffected by most
transitions. This problem is further complicated by the need for flexibility. In-
deed, the definition of an observer may be in a specification, while that of some
specific transitions affecting its result may be in another specification, extending
or using the first one.

In this paper, we present an extension of Casl-Ltl providing constructs to
solve these problems, by automatically adding the axioms to capture the frame
assumption. Thus, it enables a readable and compact style for the development
of observer-oriented dynamic specifications. Our proposal is highly modular,
because the information needed to state that some transition possibly affects
the result of an observer are colocated with the definition of the transition itself.
Thus, adding new transitions do not require to change the specification of the
observer.

The semantics of the language we propose, DO-Casl (for Dynamic Observer-
based CASL), is given by reduction to Casl-Ltl. Among the different possible
way to translate the language, we selected one that yields standard Casl if the
input DO-Casl specification does not contain temporal logic axioms. We think
this choice to be more readable for the average user and it surely allows to reuse
the existing tools for Casl in most cases, while no tools for the temporal logic
extension exist so far.

1 Actually, the library includes specifications in different layers of abstraction, in order
to support more detailed design, even committed to a specific technology. But, here
we focus on the more abstract layer.
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Paper Structure. Section 2 introduces the preliminaries about Casl, Sec. 3
describes the style of specifications adopted, Sec. 4 presents DO-Casl, and
finally Sec. 5 shows how the language may be used in an extended example.

2 Casl and Casl-Ltl

The Casl algebraic specification language has been developed as central part
of the CoFI initiative2. It provides constructs for declaring basic and structured
specifications, whose semantics is a class of partial first-order models, and ar-
chitectural specifications, whose semantics is, roughly speaking, a (higher-order)
function over the semantics of basic specifications. Thus, the natural semantics
of Casl specifications is the loose one: all the partial first-order structures sat-
isfying its axioms are models of a basic specification. However, the models may
be restricted to the initial (free) ones, by means of a structuring construct, so
that methods based on initial semantics may be accommodated as well.

The building blocks of basic specifications are declarations of (sub)sorts,
operations and predicates, giving a signature, and axioms on that signature.
Operations may be total or partial, denoted by a question mark in the arity.
Casl also accommodates subsorting; here, anyway, we do not explicitly use it.

The structuring operators are the usual in algebraic specification languages,
like sum, (free) extension, renaming and hiding. We will use mostly union, ex-
tension and generic specifications. The latter being less standard, let us discuss
a bit its semantics and usage. A generic specification is named and consists of

– a list of formal parameters, which are place-holder specifications to be re-
placed, in the instantiation phase, by more detailed specifications, the actual
parameters, possibly using a fitting morphism to connect the symbols used
in the formal parameters to those in the actual parameters;

– a list of imports, which are specifications to be used as they are, for instance
that of integer numbers;

– a body specification, describing the features to be added to the parameters
and the imports by the specification.

The result of an instantiation is, roughly speaking, the enrichment of the union
of actual parameters and imports with the body, where body and parameters
are translated using the fitting morphisms, if they exist.

For a complete description of Casl, we refer to [1].

Casl-Ltl and Generalized Labeled Transition Systems. It is important
to note that Casl is one of a family of languages, sharing common constructs
and their semantics. For instance, there are restrictions of Casl without partial
functions, and/or subsorting, and/or predicates, so that the resulting languages
may be translated in other less rich languages in order to reuse specialized tools.
On the converse, there are extensions of Casl by constructs and corresponding

2 See http://www.brics.dk/Projects/CoFI and http://www.cofi.info/
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semantics to deal with specific problem. For instance, there is higher-order Casl
(see e.g. [2]) and state-based Casl (see e.g. [3]).

In the sequel we will use Casl-Ltl (see [4]), which is designed to describe
generalized labeled transition systems (glts from now on).

A glts may be used to represent the evolution of a dynamic system. It consists
of a set of states of the system, one of labels, one of information and finally the
transition relation, representing the evolution capabilities of the system. Any
element of the transition relation is a tuple consisting of the starting and the
final states, a label, capturing what is relevant to the external world, and an in-
formation, for what is relevant only to the system itself. For instance, if a system
is keeping track of the number of sent messages, the transition corresponding
to sending all the messages in a queue will have the message list coded in the
label and the number of sent messages in the info part, to be used to update the
internal counter. Any state of the system corresponds to the process having an
evolution tree determined by the transition system itself, where each branch is
given by a transition of the system and represents a capability of moving of the
parent state.

A glts may be specified by using Casl-Ltl. Indeed, Casl-Ltl allows to
declare dynamic sorts, using the construct dsort ds label l ds info i ds .
This Casl-Ltl construct semantically corresponds to the declaration of the sorts
ds , l ds , and i ds for the states, the labels and the information of the glts, and
of the transition predicate preds :: −−→ : i ds × ds × l ds × ds , as well.

Thus, each element s of sort ds in a model M (an algebra or first-order struc-
ture) of the above specification corresponds to a process modelled by a transition
tree with initial state s determined by the glts (i dsM, dsM, l dsM, :: −−→ M )3.

The most important extension of Casl-Ltl w.r.t. Casl is the enrichment of
the logic by constructs from a branching-time CTL-style temporal logic, which
effectively increase the expressive power of the language (see [5] and [4]).

In the sequel we will use an obvious shortcut when either the label part or the
information one are irrelevant, dropping any reference to the immaterial aspect
using transition predicates such as −−→ : ds × l ds × ds and :: → :
i ds×ds×ds . The general case is computed from the shorter version, by adding
a sort with just one element for the missing component and decorating all the
transitions with that element.

3 Lessons Learned from Developing a Library for
Distribution

Our Casl-library for distribution, as motivated in the Introduction, is hierarchi-
cally organized in a directed acyclic graph of refinements4, where all the nodes are
loose specifications, having as models all those middleware implementing some
3 Given a Σ algebra A, and a sort s of Σ , sA denotes the interpretation of s in A;

similarly for the operation and predicates of Σ .
4 Here, refinements has the traditional meaning of model-class inclusion. This property

is guaranteed in our specifications by the use of the extension construct.



100 M. Dell’Amico and M. Cerioli

set of functionalities. Thus, the refinement in this context corresponds mostly to
adding functionalities, not to making implementation decisions (though we also
provide a few detailed specifications representing an individual middleware).

In order to achieve this result, we adopt an observational style, in the sense
that we introduce functions and predicates to extract from the elements (rep-
resenting internal states of the subsystems) the values of some of their aspects,
which we regard as relevant for the applications to be built upon our infrastruc-
ture. However, we are not relying on the observers to distinguish elements, as in
most observational approaches.

Indeed, by the nature of our library, the set of observers is continuously ex-
tended, as new aspects of the nodes and networks are introduced by the library
specifiers and end-users. Thus, the fact that the current set of observers cannot
distinguish between two elements is not a clue of their equality; it could as well
be an indication of some aspect still to be taken into account. Therefore, our
approach has in common with more traditional observational approaches (e.g.,
the pioneering [6]; we defer to [7] for further references) only the intuition of the
black-box approach and the use of the word observer.

For instance let us consider the case of the most basic specification in our
library, the one of peer, as a paradigmatic example of the difficulties we encoun-
tered in the development of the library and the solution we propose.

A peer is the abstraction of any node in a net. It has a persistent identity, the
capability to connect to a net using a given address and to disconnect from the net.
Thus, we leave underspecified how elements of the peer sort are made and intro-
duce functions extracting the identity, address (possibly undefined if the peer is not
connected), and online status from such elements, as in the following signature5:
sort PeerId , Address
dsort Peer label PeerL
ops online : Address → PeerL

offline :→ PeerL
id : Peer → PeerId
addr : Peer →? Address

preds isOnline : Peer

where we have (static) sorts, describing data types, like for instance the (to-
tally unspecified) sort for peer identifiers, PeerId , or that for the labels of their
transitions, PeerL. Moreover, we also have the dynamic sort Peer , representing
the states of the nodes. Analogously, we have operations building some sort,
like for instance online and offline, which denote particular labels, and we have
observers, both operations like id and addr , and predicates like isOnline, used
to extract, or observe, aspects of the peer states.

Now, we need to state two different kinds of axioms. First of all, we have the
standard axioms, describing the effects of operations and transitions, such as
asserting that after going online with an address a, the peer is actually online
and its address is a. But, we also have to state that no transition is affecting
the value of id , as the identity is persistent, that the only transitions affecting

5 Notice the obvious adaptation to the case with silent information.
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isOnline are those actually taking the peer on and off line, and that the address
is persistent for each connection, so that it can change only if some connection
or disconnection has taken place. These are quite different from the previous
ones, from a logical point of view, because they express a property that the
users usually implicitly assume: each aspect of the status of the system changes
only if forced to, by a transition explicitly modifying it. But, there is no such a
thing as an implicit assumption in specifications. Unless some axiom is imposed
to guarantee it, there are models which do not satisfy it. In other words, we have
to state a sort of frame assumption (see e.g. [8]) for some observers.

However, there are two important differences from standard frame assumption
in our approach. First of all, we want to explicitly state that some properties of
the system change and some do not for a given transition, but leave most of them
underspecified, changing or not depending on the individual models. Thus, the
frame assumption would hold only for a subset of the functions and predicates
on the dynamic sorts, those we call observers.

Moreover, we need a flexible way to state the frame assumption to accom-
modate further refinements of the specification. Let us for instance consider the
problem of stating the persistency of the address in each continuous connection.
If we simply add the axiom6

∀ l : PeerL; ∀ p, p′ : Peer; • addr(p) = addr(p′) if
(p l−−→ p′ ∧ (∀a : Address.¬l = online(a)) ∧ ¬l = offline)

then we forfeit the capability to add in an extension of this specification a label
representing another way of connecting, for instance the connection without
explicit address, for those cases where the address is dynamically provided by a
server. Indeed, even if we add such labels, they cannot change the address of the
peer, being different from online and offline.

This would be clearly unacceptable in our approach, where new refinements
of the specifications can be added to represent richer middleware or to support
more demanding applications. Following our observational approach, instead of
stating that only transitions using some individual labels may affect an observer,
we describe abstract properties on the labels and require that only the labels
satisfying them can affect the predicate. For instance, in our example, the prop-
erty of being online may be influenced by all the labels representing a connection
or a disconnection, but by no others. Thus, we use again predicates on the labels
and info to describe the category of actions they are representing and use these
predicates in turn to state our weak form of frame assumption. In this way we
achieve a separation of concerns and a higher level of modularity: at the mo-
ment when observers are introduced, the specifier has to decide with categories
of transitions may change the observation. But, it is only at the moment of the
definition of each individual transition, that is, of its label and info, that the
decision about which are its categories has to be made.

It is worth noting that the actual labels become superfluous and can be
dropped from the specifications of the abstract behavior of the middleware

6 This approach is similar to the expansion of “not changed by other events” in [9].
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classes. The actual labels appear, together with the axioms categorizing them
w.r.t. the observers, in the lower level specifications, those representing indi-
vidual middlewares and in the end-user specifications, where they are used to
describe the moves of the system at the applicative level.

Thus, our toy example should be changed as follows

sort PeerId , Address
dsort Peer label PeerL
ops id : Peer → PeerId

addr : Peer →? Address
preds goesOnline : PeerL

goesOffline : PeerL
isOnline : Peer

∀ l : PeerL; p, p′ : Peer
• id(p) = id(p′) if p l−−→ p′

• addr(p) = addr(p′) if (p l−−→ p′ ∧ ¬goesOnline(l) ∧ ¬goesOffline(l))
• def (addr(p)) if p l−−→ p′ ∧ goesOnline(l)

Though, technically, this is satisfactory, from a methodological point of view it
is not. Indeed, the end user is required to add lots of trivial axioms of the form
• obs(d) = obs(d ′) if (i : d l−−→ d ′ ∧ ¬cat1 (l , i) ∧ . . . ∧ ¬catn(l , i)) to state

that the transition (s)he is introducing does not affect the result of most ob-
servers. But, the user should be more encouraged to focus on the pairs “transi-
tion + observer” where the transition is relevant to that observer, than on those
where, being no relationship between the two components, things are not going
to change and hence the corresponding axiom has to be issued.

We need a mechanism to clearly separate the axioms stating which category
of transitions affects which observer, from those describing the effects and, more-
over, to automatically add the axiomatization of the default behavior, where the
observer values are not changing unless some transition affecting the correspond-
ing aspect takes place.

4 DO-Casl

Let us introduce a syntactic short-cut, which does not require any change in the
semantics, because the terms introduced by this new construct reduces to terms
in standard Casl-Ltl, and then Casl in the case no temporal logic is used in
the specification. In the choice of the restrictions for such a construct, we have
been guided by pragmatic considerations, choosing a generality sufficient to deal
with all the cases in our library and, at the same time, not so extreme to make
the translation in standard Casl difficult.

We start by adding a new production for the SPEC non-terminal of the gram-
mar of the abstract syntax. The terms generated by this production will cor-
respond to the dynamic specifications using observers, that is a special case of
Casl-Ltl basic specifications including one or more observer blocks.
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Any observer block refers to a dynamic sort and encapsulates the definition of
observers on that sort, together with categories of transitions which may affect
them and axioms to express this dependency.

Definition 1. The context free grammar of DO-Casl adds to that of Casl-
Ltl the following productions (terminal and non-terminal symbols):

SPEC ::= . . . | DSPEC
DSPEC ::= dyn-spec DBASIC-ITEMS*
DBASIC-ITEMS ::= BASIC-ITEMS | OBS-BLOCK
OBS-BLOCK ::= obs-block DSORT-DECL OBS-ITEMS*
OBS-ITEMS ::= OP-ITEMS | PRED-ITEMS | CATEGORY-ITEMS |

VAR-ITEMS | CAT-AXIOM-ITEMS
CATEGORY-ITEMS ::= category PRED-DECL+
CAT-AXIOM-ITEMS ::= axiom-items CAT-FORMULA+
CAT-FORMULA ::= CAT-QUANTIFICATION | CAT-IMPLICATION
CAT-QUANTIFICATION ::= quantification universal VAR-DECL CAT-IMPLICATION
CAT-IMPLICATION ::= implication PREDICATION AFFECTS |

implication AFFECTS AFFECTS
AFFECTS ::= affects VAR VAR PREDNAME |

affects VAR VAR OPNAME

The concrete syntax is as close to Casl-Ltl as possible.

Definition 2. The concrete syntax for DO-Casl is the same as that of Casl-
Ltl for the terms common to both languages. For the newly added terms, the
concrete syntax is as follows:

– a DSPEC starts with the keyword dspec and ends with end dspec 7;
– an OBS-BLOCK starts with the keyword observe and ends with end obs;
– a CATEGORY-ITEMS starts with the keyword cats;
– the concrete syntax for CAT-AXIOM-ITEMS, CAT-QUANTIFICATION,

CAT-FORMULA and CAT-IMPLICATION is the same as for the corresponding
languages in Casl;

– (l,i) affects o is the concrete syntax for a term of the form affects l i o.

Besides the static correctness of standard Casl, we also impose a few
requirements.

Definition 3. For an observer block referring to a dynamic sort dsort ds label
l ds info i ds to be statically correct, we require that:

– all the enclosed operations and or predicates must have ds as (unique) source;
in the following we will call them observers on ds;

– all declarations of predicates in a CATEGORY-ITEMS section must have
l ds × i ds as source; in the following we will call them categories on l ds ×
i ds;

– in each axiom,

7 Mandatory, to simplify parsing.
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• the predicate symbols in a PREDICATION must be declared as categories
within the same block and their arguments must be local variables of
appropriate sort;
• the operation and predicate names in an AFFECTS must be declared as

observers within the same block;
• the variables in an AFFECTS must be of sort l ds and i ds, respectively.

Since the source for observers and categories must agree with the static require-
ments, they could be deduced from the observer block head. Though requiring
them to be explicitly stated is then redundant, and a possible source of error,
we prefer to use this verbose syntax, because it is closer to the standard Casl
declarations of functions and predicates and hence, supposedly, easier for the
end-users. Specialized editors could be easily devised, which automatically sup-
ply the deducible sorts in the declaration of observers and categories, to save the
users the pain of writing them.

Let us consider as an example the peer specification, using the syntactic sugar
introduced so far to represent the observers. Notice that the operations online
and offline have been dropped, because their role is filled by the corresponding
predicates. Moreover, we give here the full specification, with also the axioms
external to the block. Finally, note that the specification is parametric over the
definition of the addresses (e.g., IPv4, IPv6, JXTA or Chord identifiers, etc.)

spec Peer [sort Address ]=

dspec
sort PeerId
observe Peer label PeerL

ops id : Peer → PeerId
addr : Peer →? Address

preds isOnline : Peer
cats goesOnline : PeerL

goesOffline : PeerL
∀ l : PeerL

• goesOnline(l) ⇒ l affects isOnline
• goesOffline(l) ⇒ l affects isOnline
• l affects isOnline ⇒ l affects addr

end obs
∀ l : PeerL; p, p′ : Peer

• isOnline(p′) if p l−−→ p′ ∧ goesOnline(l)
• ¬isOnline(p′) if p l−−→ p′ ∧ goesOffline(l)
• def (addr(p)) if isOnline(p)

end dspec

Now, let us define the semantics of our constructs, by reduction to Casl-Ltl.
The basic intuition is to translate categories to standard predicates and to add
a predicate ad hoc to represent the capability of affecting a given observer.
Moreover, we want to keep only those models where such ad hoc predicates
are minimal with respect to the axioms given in the observer block and the
interpretation of the categories on the individual model. To get this result, we
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will intersect the models of the translated specification with those of a free, and
hence minimal, specification for the ad hoc predicates.
Definition 4. For a correct observer block obs blk8

observe ds label l ds info i ds
ops f1 : ds →? s1 ; . . . fn : ds →? sn ;
preds p1 , . . . , pm : ds;
cats pt1 , . . . , ptk : l ds × i ds
vars x1

1 , . . . , xn1
1 : s1 ;. . . ;x1

k , . . . , xnk
k : sk ;

ϕ1 . . . ϕh

end obs
its expansion, denoted DOCASL2CASL(obs blk), is the following basic specifica-
tion
dsort ds label l ds info i ds
ops f1 : ds →? s1 ; . . . fn : ds →? sn ;
preds p1 , . . . , pm : ds; pt1 , . . . , ptk : l ds × i ds

aff f1 , . . . , aff fn , aff p1 , . . . , aff pm : l ds × i ds
∀ l : l ds; i : i ds; d , d ′ : ds;

%% transitions not affecting f1 . . . fn ,p1 . . . pn leave the observer result unchanged
(¬ aff f1 (l , i)) ∧ i : d l−−→ d ′ ⇒ f1 (d) = f1 (d ′)
. . .
(¬ aff pm (l , i)) ∧ i : d l−−→ d ′ ⇒ (pm(d) ⇔ pm(d ′))

Moreover we will call free aff(obs blk) the 4-tuple

(SSp(obs blk), CSp(obs blk), OSp(obs blk), ASp(obs blk))

where

– SSp(obs blk) is sorts l ds,i ds
– CSp(obs blk) is preds pt1 , . . . , ptk : l ds × i ds
– OSp(obs blk) is preds aff f1 , . . . , aff fn , aff p1 , . . . , aff pm : l ds × i ds
– and ASp(obs blk) is ∀ x l ds : l ds;x i ds : i ds; trans(ϕ1 ). . . trans(ϕh ),

where trans drops any variable quantification and transforms each occurrence
of (l , i) affects o into aff o(x l ds , x i ds), where x l ds and x i ds are fixed
variable names.

A correct dynamic specification including observer blocks obs blk1 . . . obs blkn
translates to the specification given by leaving all the BASIC-ITEMS unaffected,
by replacing each obs blki by DOCASL2CASL(obs blki) and adding at its end, the
following fragment:

and {
SSp(obs blk1 ). . . SSp(obs blkn)
CSp(obs blk1 ). . . CSp(obs blkn )

then free {OSp(obs blk1 ). . . OSp(obs blkn)
ASp(obs blk1 ). . . ASp(obs blkn)}}

The models of the final fragment are first-order structures on a signature with
as set of sorts all the sorts for labels and info from some observer block, no

8 We are using only partial functions for simplicity, but total functions are allowed as
well, of course.
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operations, and as predicates both those representing categories and those in-
troduced to translate the AFFECTS atoms. The models of this fragment may
have any interpretation for the sorts and the predicates representing categories
because these sorts and predicates are declared within the block with no axioms
or operations. But, by definition of freenes, it has the minimal interpretation
of the predicates representing the AFFECTS atoms compatible with the explicit
axioms stated in the observer blocks. Since the axioms used in the free construct
are all positive conditional (see e.g. [10]), this block is guaranteed to be consis-
tent. By making the intersection of this model class with that of the expansion of
the specification (which could be empty if the axioms imposed by the users are
inconsistent), we get only those models where the common algebraic structure
is interpreted in the same way. Thus, the label and info sorts and the category
predicates satisfy the explicit axioms in the specification.

Let us see what is the expansion of our running example.

spec Peer [sort Address ]=
sort PeerId
dsort Peer label PeerL
ops id : Peer → PeerId

addr : Peer →? Address
preds isOnline : Peer

goesOnline, goesOffline : PeerL
aff id, aff addr, aff isOnline : PeerL

∀ l : PeerL; ∀ p, p′ : Peer
• ¬ aff id(l) ∧ p l−−→ p′ ⇒ id(p) = id(p′)
• ¬ aff addr(l) ∧ p l−−→ p′ ⇒ addr(p) = addr(p′)
• ¬ aff isOnline(l) ∧ p l−−→ p′ ⇒ (isOnline(p) ⇔ isOnline(p′))
• isOnline(p′) if p l−−→ p′ ∧ goesOnline(l)
• ¬isOnline(p′) if p l−−→ p′ ∧ goesOffline(l)
• def (addr(p)) if isOnline(p)

end
and {
sorts PeerL
preds goesOnline, goesOffline : PeerL
then free {
preds aff id, aff addr, aff isOnline : PeerL
∀ l : PeerL;

• goesOnline(l) ⇒ aff isOnline(l)
• goesOffline(l) ⇒ aff isOnline(l)
• aff isOnline(l) ⇒ aff addr(l) } }

Note that atoms of the form (l , i) affects o are well-formed only inside the
observer block(s) where o is introduced. Thus, the information about which
category of actions may change the value of an observer must be collected in the
same block where the observer is declared. If the same observer obs is declared in
two or more blocks (which must refer, then, to the same dynamic sort) within the
same dynamic specification, then the resulting semantics is equivalent to having
the two blocks merged in one. Indeed, the minimality of the predicate aff obs is
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described by the collection of all the free aff(obs blki) and hence it is immaterial
in which block a category, or an axiom is given. On the contrary, if the same
observer obs is declared in two or more blocks in different dynamic specifications,
then the first occurrence completely defines the semantics of aff obs and the
further definitions are either useless or harmful, if introducing inconsistences.

What does not need to be co-located with the observer first declaration, is
the definition of the validity of the category predicates. Thus, labels and info
introduced further on in the specification can affect an observer already defined.

A simple tool implementing the semantics given in Def. 4 is available on the
web9. Such tool does not check syntax requirements; thus, it is only guaranteed
to work on statically correct DO-Casl input. If the input specification does not
contain any temporal logic formula, the result is a standard Casl specification,10

which can be handled by Casl tools such as HETS11.

5 Writing DO-CASL Specifications

In this section we will extend the already seen Peer specification, in order to
give an example on how specifications in DO-Casl can be written.

We will show a simple specification of a P2P application where nodes can send
messages each other. Received messages will be accessible in an “inbox” until
they are deleted. We are making use of the CASL standard library (see e.g. [1])
for the Set and Map structured data types.

spec BasePeer = Peer [sort Address ]

The BasePeer specification is just a shortcut. It is used in parametric specifica-
tions, which could otherwise get quite unwieldy when using a parametric specifi-
cation as a parameter. We will systematically use this scheme in the following.

spec Net [BasePeer ]=
Set [sort PeerId fit Elem �→ PeerId ] and
Map [sort PeerId fit S �→ PeerId ][sort Peer fit T �→ Peer ] and
Map [sort PeerId fit S �→ PeerId ][sort PeerL fit T �→ PeerL ]

then dspec
sort Net = Map [PeerId , Peer ]; NetI = Map [PeerId , PeerL ];
observe Net info NetI

ops dom : Net → Set[PeerId]
end obs
∀id : PeerId; n,n ′ : Net; i : NetI

• dom(i) ⊆ dom(n) if i :: n −→ n ′ %% shortened notation with no label

9 http://www.disi.unige.it/person/DellamicoM/do-casl
10 The tool also expands the dynamic sort declarations from observer blocks. Thus,

using the equivalent form observe ds label l ds info i ds end obs to represent
ds label l ds info i ds, it may be used also as a preprocessor for Casl-Ltl,
which is currently not supported at all, for specifications without temporal axioms.

11 http://www.informatik.uni-bremen.de/agbkb/forschung/formal methods/
CoFI/hets/



108 M. Dell’Amico and M. Cerioli

• lookup(id ,n)
lookup(id,i)−−−−−−−−→ lookup(id ,n ′) if i :: n −→ n ′ ∧ id ε dom(i)

• lookup(id ,n) = lookup(id ,n ′) if i :: n −→ n ′ ∧ ¬id ε dom(i)
end dspec

spec BaseNet = Net [BasePeer ]

The Net specification models a network of peers which are part of it even if
transiently offline.

Since a network is a closed system with no interactions with the outside world,
its transitions are decorated with info only.

A Net is a mapping from peer identifiers to peers; in this way, it is guaranteed
that no two nodes can have the same identifier within the same network. Anal-
ogously, Net transitions are mappings from node identifiers to peer transition
labels, associating each moving node to the label decorating its local transition.
Idle nodes do not belong to the domain of the Net transition.

We describe the dom operation on Net as an observer that is not influenced
by any category of labels. This succinctly ensures that the identifiers represented
in a network never change during the evolution of a network.

Our library handles a more general case, with nodes dynamically entering
and leaving the network, by defining categories that influence the peers in the
network.
spec Messages [BaseNet ]=

Set [sortMsg fit Elem �→ Msg ]

then dspec
observe Peer label PeerL

op inbox : Peer → Set[Msg]
cats receives, deletes : PeerL
∀ l : PeerL

• receives(l) ⇒ l affects inbox
• deletes(l) ⇒ l affects inbox

end obs
ops orig, dest : Msg → Address;

sent, received : PeerL → Set[Msg]
∀m : Msg; p, p′ : Peer; l : PeerL; id : PeerId;n,n ′ : Net, i : NetI

• received(l) = {} if ¬receives(l)
• deleted(l) = {} if ¬deletes(l)
• inbox(p′) = (inbox(p) − deleted(l)) ∪ received(l) if p l−−→ p′

• isOnline(p) if p l−−→ p′ ∧ isNonEmpty(received(l) ∪ sent(l))
• dest(m) = addr(p) if p l−−→ p′ ∧ m ε received(l)
• orig(m) = addr(p) if p l−−→ p′ ∧ m ε sent(l)
• m ε received(lookup(id , i))

if i :: n → n ′ ∧ l ε range(i) ∧ m ε sent(l) ∧ id ε dom(n)
∧ addr(lookup(id ,n)) = dest(m)

end dspec

spec BaseMessages = Messages [BaseNet ]

This specification enriches the peers with the capability of sending and receiv-
ing messages. Messages carry information about addresses of the sender and the
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recipient, respectively via the orig and dest operations. Whenever a peer sends a
message, the destination immediately receives it (the recipient node has to be on-
line, otherwise the sending operation cannot be executed). The sent and received
operations are meant to extract the sent and received messages in a transition.

Moreover, an inbox observer has been defined. Received messages remain in
it until they are erased, possibly after a command from a user. While a node can
only send and receive messages while it is online, it can erase messages from its
own inbox at any time.

In the Messages specification we have adopted a different style in order to
define the value of observers w.r.t. Peer. Indeed, in Peer the observers were
defined with axioms of the form obs(p′) = . . . if p l−−→ p′ ∧ cati(l), for each
cati affecting obs . This style is safe, in the sense that no inconsistency with the
minimality of the aff obs predicates having some cati(l) in the premises may be
introduced, but it is quite verbose.

In Messages, the inbox observer is specified differently. Indeed, the axiom
giving its value is not guarded by a receives(l), nor by a deletes(l). Thus, it could,
potentially, introduce an inconsistency. However, since received and deleted yield
the empty set on label not satisfying receives nor deletes, for such labels the
axiom is equivalent to stating that the value of the observer in the source and
target state is unchanged, as required by the frame assumption. This style of
specification is more readable and concise, though more error prone.

Both styles are convenient in different settings and DO-Casl allows to use
both.

spec FinalMessages = BaseMessages
then

free generated type PeerL ::=
online(Address) | offline | send(Msg) | recv(Msg) | del(Msg)

∀l : PeerL; a : Address; p, p′ : Peer;m : Msg
• goesOnline(l) ⇔ (∃a : Address • l = online(a))

• addr(p′) = a if p
online(a)−−−−−−−→ p′

• goesOffline(l) ⇔ l = offline
• sent(send(m)) = {m}
• receives(l) ⇔ (∃m : Msg • m = recv(m))
• received(recv(m)) = {m}
• deletes(l) ⇔ (∃m : Msg • m = del(m))
• deleted(del(m)) = {m}

end

We have concluded this section with an oversimplified example of a final
definition of the transition labels. In this case, a transition can only be a simple
operation like going online, offline, sending, receiving or deleting a message.

Notice that all the tedious axioms, such as received(offline) = {} or addr(p) =

addr(p′) if p
del(m)−−−−−→ p′, are inherited from the interplay between the, so to

speak, global statements of BaseMessages and the local definition of the cat-
egory validity.
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6 Conclusions and Further Work

We have introduced a specification style and some syntactic sugar supporting it
in the Casl language, motivated by our experience with the definition of loose
dynamic specifications.

The use of the resulting language, DO-Casl, is supported by a small proto-
type, compiling it in Casl, so that standard tools can be used on the resulting
specifications.

Though we have fully developed the semantics of DO-Casl and, we hope,
given convincing examples of DO-Casl usefulness in interesting realistic exam-
ples, the language itself has not been submitted formally as a Casl extension
yet. We plan to do it if it is well received by the scientific community.
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Abstract. Model transformations are an integral part of OMG’s stan-
dard for Model Driven Architecture. Model transformations are advo-
cated to be behaviour preserving: platform specific models should adhere
to platform independent descriptions developed in earlier design stages.

In this paper, we deal with models consisting of several views of a
system. Often, in such a scenario, model transformations change just one
view, and, although the overall transformation of all views is behaviour
preserving, it is not behaviour preserving in isolation. To tackle this
problem we develop a proof technique (and show its soundness) that
allows one to consider just the view that has changed, and not the entire
system. We focus specifically on one particular class of view-crossing
transformations, namely on transformations conjunctively adding new
constraints to a model.

1 Introduction

The Object Management Group’s standard for model-driven architecture (MDA)
defines models to be the core concept in software development. Model transfor-
mations are intended to provide the means for getting from high-level platform
independent (PIM) to lower level platform specific models (PSM). Model trans-
formations are expected to be behaviour preserving: lower-level models should
preserve the behaviour of higher-level models. For complex systems, modelling
usually has to take many different aspects into account [FKN+92, ZJ96]. A com-
plex system has to fulfill several orthogonal requirements: on the static behaviour
(data and operations), on its dynamic behaviour (adherence to protocols, sce-
narios), its timing behaviour, etc. Thus a model of a complex system will usually
consist of descriptions of several views. Consequently, different kinds of model
transformations operate on different views.

In this paper, we are interested in proving correctness of model transforma-
tions with respect to the intended property of behaviour preservation. To this
end, we will look at models written in a formal specification language and give
a formal definition of behaviour preservation. There is much recent activity on
using formal notations to guarantee behaviour preservation, especially in the
area of refactorings [MS04, MT04, PR03, SPTJ01, KHK+03]. These approaches
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either directly start with a formal model or operate on UML models, using a
formal semantics for some of the UML diagrams. While most of these approaches
define specific model transformations, we will take the contrary approach here
and develop a technique for a posteriori verifying the correctness of a given
transformation.

An ideal starting point for verifying model transformations in a formal context
is the notion of refinement, used as the development method in formal meth-
ods [DB01, dE98]. Designed with the intention of guaranteeing substitutability,
refinement is a suitable correctness criterion for model transformations. Most
formal approaches to model transformations only apply to a single specification
formalism, i.e., a single view in the model. The same is true for refinement. For
models or specifications consisting of multiple views specified in different for-
malisms, different refinement concepts have to be applied in combination. This
has led to extensive work on understanding how different notions of refinement
fit together [He89, Jos88, BD02, DB03]. For example, one can show that a joint
usage of data refinement (on a static view) and process refinement (on a dy-
namic view) guarantees behaviour preservation for models incorporating both
views.

However, not all model transformations can be neatly divided into smaller
transformations operating on a single view. Some transformations go across
views, e.g., aspects are being moved between views or changes on one view
are based on properties of other views. Such transformations will be the focus
of this paper.

We encountered this problem in a project where UML was used to generate
first a formal model, and from this Java code [MORW04] was developed. The
translation to Java usually first necessitated alterations to the formal model,
particularly the state-based view which made up most of the Java program.
These transformations often turned out not to be refinements anymore (and
thus not, individually, behaviour preserving), but – in connection with the other
views – still were behaviour preserving. There was, however, no suitable proof
technique for showing this at hand (besides those of computing the complete
semantics of both models and directly comparing them). The purpose of this
paper is to develop such proof techniques.

The particular formal notations we use here are Object-Z [Smi00] for data-
oriented modelling (the static view) and the process algebra CSP [Hoa85, Ros98]
for the dynamic view and for architecture specification. Our platform indepen-
dent models are thus written in languages which allow abstract specification
(nondeterminism, underspecification etc.) and leave out implementation details.
For the platform specific models we use the same formalisms but then impose
restrictions on the specification (no nondeterminism, bounded data types only,
etc.) which mimic platform specific features found, e.g., in Java. We also use
UML diagrams to describe the architecture of the overall system. Using the
translation proposed in [MORW04], the proof technique for transformations de-
veloped here is thus also transferable to UML models when written in the profile
employed in [MORW04].
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The paper is structured as follows. Section 2 starts with a motivating exam-
ple of transformations incorporating more than one view. The transformations
that we deal with are changes on the static view which conjunctively add new
constraints to the model. Section 3 presents our notion of correctness for model
transformations. Section 4 explains the technique used for showing behaviour
preservation for transformations incorporating multiple views, which consists of
two aspects: a check for i/o independence of the new constraint and a trace
check on projected components. Section 5 describes some tool-support for the
technique, and in particular for the trace inclusion. Finally, Section 6 concludes
and discusses related and future work.

2 Case Study

Our running example is the holonic manufacturing system [Weh00]. This system
processes workpieces (initially stored in some in-store) by a number of machines
and finally stores them in an out-store. The transportation of workpieces in
the factory is carried out by autonomous (also called holonic) transportation
units (abbreviated HTS = holonic transportation systems). Transportation is
not regulated by a central control but achieved via negotiation between stores,
machines and HTS’. Once a store or machine has a workpiece to be transported it
asks the transportation units for offers about the costs of such a transportation.
Having obtained all offers it chooses the one with the smallest cost and orders it.
Our model shows just one small part of the case study concerning this negotiation
(which we further simplify to ease readability).

2.1 Model 1 – PIM

The initial model consists of three views: A static view describing (just one) class
with attributes and methods, a dynamic view describing a protocol of interac-
tions for this class and a composite structure diagram describing the architecture
of the system.

Static view. The static view is given in Object-Z, an object-oriented state-based
specification formalism. The role of Object-Z in our model is similar to that
played by class diagrams with OCL constraints in UML models: it describes
variables and methods of classes with class invariants and pre- and postcondi-
tions. A class specification starts with a definition of the interface of the class,
followed by a declaration of its state (its variables) together with an init schema
giving restrictions on initial values of variables. After that a number of method
schemas define the methods of the class. Here, primed and unprimed variables
refer to the after and before states respectively; input and output parameters are
decorated with ? and ! respectively, and are undecorated if they are used for ad-
dressing objects. The predicates appearing in the schemas of methods (com . . .)
state pre- and postconditions of methods (in UML, this would be specified in
OCL). The precondition acts as a guard for method execution; outside the pre-
condition method execution is refused (i.e., it is blocked).
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Machine
method offer : [ h : Hts ; cost? : Cost ]
method order : [ h : Hts ]
local chan choose
...

offers : seq(Hts × Cost)
orderTo : Hts
...

Init
offers = 〈 〉

com offer
Δ(offers)
h : Hts , cost? : Cost

offers ′ = offers � 〈(h, cost?)〉

com order
Δ(offers)
h : Hts

h = orderTo ∧ offers ′ = 〈 〉

com choose
Δ(orderTo)

∃ i : 1..#offers ,n : Cost •
offers i = (orderTo′,n) ∧ ∀ j �= i : n ≤ second(offers j )

...

This specification defines a class Machine which includes two public methods
offer and order and a private method choose. It has a variable offers storing
the name of the offering HTS’ together with the cost, and a variable orderTo
describing the destination HTS. The type Hts is the names of transportation
units and Cost a fixed range of natural numbers. Method offer changes the
variable offers (denoted by having offers in its delta-list), and appends the next
offer to the end of the sequence. Method order orders the transportation unit
which is currently assigned to attribute orderTo and empties sequence offers .
Method choose chooses the HTS with the cheapest offer in the sequence and
assigns it to orderTo. The static view also contains a number of classes for
stores and transportation system, these are elided here.

Dynamic view. In the dynamic view every class in the system may, in addition,
have a protocol regulating the allowed ordering of method invocation. For class
Machine it is the following, given as a CSP process description1.

main = FindHts ; main
FindHts = |||h∈Hts offer .h; choose → order → SKIP

1 Alternatively, we could also have used a simple state machine for describing this
protocol (and translate it to CSP in order to verify the model transformation later).
Such a translation is employed in [RW03].
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This process description specifies the protocol for class Machine to be a repeated
execution of getting offers, followed by choosing an offer and ordering it. In
the CSP, main defines the dynamic behaviour of Machine, ||| is the parallel
interleaving operator, offers are obtained from the HTS’ in parallel; → and ;
are sequencing operators; SKIP denotes termination. Again we elide methods
of Machine that were not included in the above class specification (e.g., those
concerned with loading, unloading and processing workpieces).

Architecture. As a third view on our system we incorporate a UML 2.0 composite
structure diagram (Figure 1) in our model. It describes the architecture of the
system, again just giving the interconnections for Machine, which communicates
with objects of class Hts via two ports corresponding to methods offer and order .
The structure diagram also fixes the number of components in the system: here
two machines and three transportation units.

hts=h1|h2|h3

offer

order

...

...

System

:Machine[2]hts:Hts[3]

Fig. 1. Partial architecture of manufacturing system

These three specifications make up our first model.

2.2 Model 2 – PSM

Next, we modify our first model in order to improve its implementability in
a programming language, i.e., we make a transformation towards a platform
specific model. The target language in the project that motivated this work was
Java, however, here we just assume that our target language requires

– methods to be deterministic,
– methods to be totally defined, and
– data types to be bounded.

This necessitates three changes in our model. The private method choose is non-
deterministic since it chooses an arbitrary HTS out of those with the smallest
number, and it is only partially defined since its predicate just fixes an out-
come for nonempty sequences. The sequence offers used to store offers coming
from transportation units is furthermore unbounded. We thus need the following
transformations:
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1. Determinism. The change necessary to make choose deterministic is the
addition of n = second(offers j ) ⇒ i < j to its predicate. If more than one
HTS has given a minimal offer, the first one in the sequence offers is chosen.

2. Total methods. For making choose total, we have to state what should happen
in case that choose is called when the variable offers is empty. Here, we
simply specify non-emptiness of offers to be a precondition for choose and
thus add offers �= 〈 〉 to the schema.

3. Bounded data types. Finally, we have to fix an upper bound for the size of
offers . We do so by adding a class invariant to the specification restricting
the size of offers to three (we will soon see why three is sufficient): #offers ≤
3. Note that we thus implicitly specify method offer to be blocked once the
sequence has reached size three.

The dynamic view and the architecture remain unchanged. The resulting plat-
form specific model thus consists of the following new class specification together
with the same CSP process main and the same structure diagram.

Machine2
...

offers : seq(Hts × Cost)
orderTo : Hts
...

#offers ≤ 3

...

com choose
Δ(orderTo)

offers �= 〈 〉
∃ i : 1..#offers ,n : Cost •

offers i = (orderTo′,n) ∧ ∀ j �= i : n ≤ second(offers j )
∧ n = second(offers j )⇒ i < j

...

This completes the specification of our platform independent and platform spe-
cific model. Next, we are interested in showing correctness of the employed model
transformation.

3 Behaviour Preservation and Refinement

For a formal proof of correctness of model transformations (which we aim at)
we first of all need two things: a formal semantics for our models and a notion
of correctness, based on this semantics.
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Semantics. Each individual (Object-Z, CSP, etc) formal modelling notation has
its own semantics. However, these notations are combined, and thus we need to
determine how the semantics of the individual views make up the semantics of
the entire model. In fact, this is constructed in two steps (see [Fis97, OW05] for a
more detailed description) as follows. First, every Object-Z class is translated to
CSP and combined with the CSP term of its protocol via parallel composition.
The parallel composition is acting as a kind of conjunction here, both restric-
tions on the behaviour from the Object-Z and from the CSP are conjoined. The
Object-Z part provides the data-dependent restrictions on the behaviour (and is
thereby implicitly specifying possible orderings of method executions), whereas
the CSP part focuses on data-independent orderings. Then, as the next step,
the thus constructed CSP processes are combined according to the structure
laid down in the structure diagram. For example, here we get

Ma = CSP(Machine) ||{order ,offer} main

as semantics of class Machine. The synchronisation set {order , offer} attached to
the parallel operator fixes the joint communication between the CSP processes.
Assuming a definition of class Hts we then get the following out of the struc-
ture diagram as the semantics for the complete platform independent model
(following a translation proposed in [FOW01]):

System = (Hts(h1) ||| Hts(h2) ||| Hts(h3)) ||{offer,order} (Ma(1) ||| Ma(2))

In the same way we can obtain the semantics of the platform specific model
which we refer to as System2.

Correctness criterion. Given the semantics of the combined model, we need to
choose a suitable correctness criterion to determine which are acceptable model
transformations. Specifically, model transformations are expected to preserve
the overall behaviour of upper level models in platform specific models. While
certain details are added, the changes made should still be unobservable to users
of the system. This can either be achieved if the semantics of the two models
are equivalent or by requiring the platform specific model to be a refinement of
the platform independent model. Unless the added details result in equivalent
models, it is likely that refinement will be the most suitable notion.

Furthermore, refinement is the notion of correctness employed in a formal
development of programs. Refinement (provably) achieves the above required
substitutability: if two models are in a refinement relationship, users cannot de-
tect whether the original model or its refinement has been used. Refinement is
therefore a suitable correctness criterion for evaluating model transformations
in this context.

The modelling notations used for the static and for the dynamic view are
both equipped with a well-defined theory of refinement. The notion of refine-
ment associated with Object-Z (and Z, B, VDM etc) is data refinement [DB01],
which allows changes of data types and operations as long as the change remains
unobservable to a user of the system. We write A �d C if the Object-Z class C
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is a data refinement of class A. Note that the more abstract specification is on
the left hand and its refinement on the right hand side.

The associated refinement concept for the dynamic view (CSP) is that of
process refinement (failures-divergences refinement [Ros98]), denoted P �p Q
if Q is a process refinement of P . It basically allows to reduce nondetermin-
ism in a process specification while keeping the required functionality. Like data
refinement it guarantees substitutability and thus is suitable for model trans-
formations. The semantic basis for the architectural view is CSP as well, thus
process refinement is also applicable for changes on the architectural view. Both
notions of refinement are moreover transitive which allows for a safe composition
of model transformations.

So far this gives us refinement concepts for every individual view. Since the
semantic domain for the entire system is CSP (or, to be precise, its seman-
tic domain), behaviour preservation from one model to another is defined as a
process refinement relationship between the models. The compositional way of
defining the semantics allows for a smooth integration of the different refinement
concepts, namely the following holds:

A �d C ⇒ CSP(A) �p CSP(C ), and

P1 �p P2 and Q1 �p Q2 ⇒ P1 || P2 �p Q1 || Q2

This allows us to separately use data refinement as the correctness criterion for
model transformations on the static view, and process refinement for the dynamic
and structural view while still achieving a process refinement relationship for the
complete model.

This compositionality is sound, but not complete. That is there are valid
transformations which cannot be studied in isolation in the individual views.
This is the case for our example. We again look at the three changes made to
our static view.

1. Determinism. The first change was introduced to make a method determinis-
tic. This is a classical change allowed by data refinement: the nondeterminism
in a specification is reduced and one possibility out of a number of possible
outcomes of a method is chosen. The transformation can safely be qualified
as being correct.

2. Total methods. The second change introduced a precondition for a method.
This change modifies the behaviour of the class: while the method was always
executable before (though with an undefined outcome in some cases), it is
now sometimes refused. If the class is considered in isolation this change is
observable by a user and not covered by data refinement.

3. Bounded data types. The third change is observable as well: the length of the
sequence offers has been restricted and thus executability of method offer
has implicitly been altered.

Of these three sub-transformations on individual views, only the first one (in the
static view) is covered by the standard refinement concept. Hence Machine ��d

Machine2. In the following we will specifically treat the two problematic changes.
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Both changes are of the same type: We have conjunctively added a new constraint
(in our modelling language, a predicate) to the static view. Moreover, the changes
are behaviour preserving when considered not in isolation but in connection
with the two other views. The architectural view fixes the number of HTS’ in
the system (to be three) and the dynamic view for class Machine limits the
number of offers without an intervening order (which empties the sequence) to
the number of HTS’. It furthermore allows choose only after some preceding
offer , thus it will never be called on an empty sequence anyway. Thus when
combining all views, model 2 does preserve the behaviour of model 1, that is,

System �p System2

indeed holds.
In the next section we develop a technique to tackle such cases. In particular,

the technique avoids one having to compute the semantics of the two complete
models (on which a comparison could of course show behaviour preservation),
and instead just compares certain parts of the models. We thus aim to regain a
certain degree of compositionality.

4 A Technique for Single View Transformations

In the sequel, our setting is always the following. We are given two models, both
consisting of one or more2 classes specified in Object-Z (static view) together
with protocol descriptions in CSP (dynamic view) plus a structure diagram
fixing the components in the system and their interconnections. We will consider
changes to the static view which are conjunctive (as those above), i.e., which
conjunctively add new restrictions to the static view. Denoting the class in the
higher level model A and its corresponding class in the platform-specific model
C we thus have transformations of the type

A
⇓

C : A ∧ Con

where Con is an additional constraint (e.g., we generated Machine2 from
Machine by conjunctively adding a constraint to its methods). Constraints can
appear as pre- and postconditions in method specifications, as class invariants
or as constraints on the initial state. The dynamic view and architecture stay as
before. We let Prot denote the CSP process description for the protocol of class
A. The role of the architectural view here is the instantiation of components:
it fixes the number and names of components that the CSP part may refer to.
We denote this instantiation by writing Prot(arch). (In our example, the CSP
process is parameterised in the set Hts which is instantiated to {h1, h2, h3} by
the structure diagram.) The problem to be tackled is thus the following:

2 In case of more than one class, the technique simply has to be applied to every class.
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Find conditions on A, Con and Prot(arch) such that the following holds

CSP(A) || Prot(arch) �p CSP(A ∧ Con) || Prot(arch)

Our main theorem below isolates two conditions, C1 and C2 which are sufficient
for this to hold.

In our case study the overall models were behaviour preserving since, al-
though the static view changed, the CSP forbids the ”new behaviour” anyway.
To apply this type of argument in general, the conjunctive change has to be
i/o-independent. A formal definition of i/o-independence based on a transition
system semantics for Object-Z is given below, however, intuitively, a change is
i/o-independent if the new behaviour does not depend on values of parameters
of method invocations. This is sufficient to show that the overall models are be-
haviour preserving since the CSP part is not making restrictions on inputs and
outputs of methods and can therefore not rule out i/o-dependent new behaviour.

The formal definition is the following, where for a trace tr : Events∗ over a
set of method names M we first define tr � M to be the sequence obtained by
stripping off the values for parameters. For tr = 〈offer .h1.5, offer .h2.8, order .h1〉
we for instance have tr � M = 〈offer , offer , order〉.

Definition 1. Let A and C be two Object-Z class specifications such that C =
A ∧ Con. Let T (A) = (QA,−→A, InA) and T (C ) = (QC ,−→C , InC ) be their
transition systems. (By construction of the semantics and C being A ∧ Con we
have QC ⊆ QA).

Con is i/o-independent iff the following holds for all traces tr : Events∗,
methods m of the class and possible parameters i and o:

∀ q0 ∈ InC , qn ∈ QC :
q0 −tr−→C qn , qn −m.i.o−−−�C ∧qn −m.i.o−−−→A

⇒ ∀ q ′
0 ∈ InC , q ′

n ∈ QC , i ′, o′, tr ′ : Events∗ :
q ′
0 −tr

′
−→C q ′

n , tr � M = tr ′ � M ⇒ q ′
n −m.i′.o′
−−−−�C

This definition relies on the on a transition system semantics for Object-Z and
CSP specifications. For Object-Z specifications, this can either be derived from
their corresponding CSP processes or given directly. For a CSP process P the
transition system is derived via an operational semantics (see [Ros98]), i.e.,
T (P) = (LCSP ,−→, {P}) with the states LCSP being the set of all CSP terms, −→
derived by the rules of the structured operational semantics and P itself being
the initial state. The semantics for the combination of both parts is obtained
by combining the semantics of the two views via CSP parallel composition, syn-
chronising on all events in the intersection of the alphabets of the individual
views. This has the effect that both the Object-Z and the CSP restrictions on
the behaviour of the class are obeyed in the combination.

There is a proof technique which can be used to show i/o-independence of
a conjunctive change of an Object-Z classes without computing the transition
systems, namely by defining a simulation like relation between the two classes.
States are equivalent in this relation if they are reached by the same method
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calls (regardless of i/o-parameters). One then has to check that on related states
Con only blocks method calls due to their name, and not their i/o-parameters.
For example, in our case study states are related if offers has the same size: the
size of the sequence in a particular state does not depend on parameters of pre-
vious offers (and also not of order and choose), it just depends on the number
of method executions. The addition of Con = #offers ≤ 3 then means that the
ability to do an offer , order or choose method does not depend on the para-
meters of the methods, but just on which method is attempted. That is, if one
offer .h.c is blocked, they all are. The added precondition (offers �= 〈 〉) is similar.

In fact for our case study, we can syntacticly check this condition: with the
methods given every predicate that only refers to the size of a sequence is i/o-
independent (note that this does for instance not apply to sets3). Thus both new
constraints #offers ≤ 3 and offers �= 〈 〉 are i/o-independent.

Once this has been established the check to be carried out is whether the CSP
part sufficiently restricts the behaviour of the class so that the constraint does
not introduce new behaviour. This is the case if

traces(Prot(arch)) � M ⊆ traces(CSP(C )) � M

holds. Here, M is the set of all method names, traces(P) the set of all traces,
i.e. sequences of events, that a CSP process P can perform and � a projec-
tion operator on traces which removes all parameters from the events (e.g.
〈offer .h1.5, offer .h2.8, order .h1〉�M = 〈offer , offer , order〉). If the protocol only
allows a subset of the traces of the constrained class C anyway, then the new be-
haviour of C (its new refusals) is not new when conjoining it with the protocol.
Note that we only have to compare the projections of the traces here (omitting
parameters) since we required i/o-independence.

These two conditions together are sufficient for checking correctness of such
model transformations.

Theorem 1. Let A,C be Object-Z classes such that C = A ∧ Con, and let
Prot(arch) be the CSP protocol description for the classes, instantiated accord-
ing to some architectural specification. If

(C1) Con is i/o-independent and
(C2) traces(Prot(arch)) � M ⊆ traces(CSP(C )) � M

then CSP(A) || Prot(arch) �p CSP(C ) || Prot(arch).

This gives us a technique for proving model transformations on the static view
of the type A ⇒ A ∧ Con to be behaviour preserving: check condition C1 on
A,C and Con and condition C2 on Prot and C . Whereas the first condition
can be checked on a single view, the second condition is a check across views.
The next section explains a tool-supported way of checking this condition and
exemplary shows this for our case study.
3 Whereas the size of a sequence essentially depends on the number of elements ap-

pended to or removed from the sequence the size of a set depends on the actual
elements that have been put in.
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5 Checking Condition C2

A tractable way of checking condition C2 is by actually carrying out the transla-
tion of the Object-Z class to CSP, and afterwards using the CSP model checker
FDR [FDR97] for checking trace inclusion. The translation of Object-Z to CSP
follows an approach outlined in [FW99]. The class is translated into a CSP
process (e.g., Machine2 becomes: process OZ(offers,orderTo) given below)
parameterised with the variables of the class. The behaviour of this process is
a choice (in CSP []) over all possible method executions followed by a recur-
sive call to the process possibly with modified instantiation of variables. The
precondition of a method acts as a guard to the method execution (denoted &).
The definition of data types (HTS) is derived from the structure diagram. This
generic process is then instantiated with initial values as given by the Object-Z
specification. The check for trace inclusion can be performed by FDR provided
the state spaces of both processes (the protocol and the translated Object-Z
class) are finite.

Below, the CSP specification of both the protocol and the Object-Z class can
be found in the syntax of the FDR model checker.

-- declaration of data types
datatype HTS = h1 | h2 | h3
Hts = {h1,h2,h3}
Costs = {1..5}

-- declaration of channels
channel offer : Hts.Costs
channel order : Hts
channel choose
channel offerProj -- channel offer without parameters
channel orderProj -- channel order without parameters

-- CSP process of protocol
main = FindHts; main
FindHts = (||| h : Hts @ offer.h?x -> SKIP); (choose -> order?x -> SKIP)

-- CSP process of class Machine2
Machine2 = OZ(<>,h1)
OZ(offers,orderTo) =

(offers != <> & let
ot = first(min(offers))

within choose -> OZ(offers,ot))
[] (length(offers) < 3 & offer?h?c -> OZ(offers^<(h,c)>,orderTo))
[] (order!orderTo -> OZ(<>,orderTo))

-- projections of main and Machine2 to method names (by renaming)
mainProj =

main[[offer.h.c<-offerProj,order.h<-orderProj|h<-Hts,c<-Costs]]
Machine2Proj =

Machine2[[offer.h.c<-offerProj,order.h<-orderProj|h<-Hts,c<-Costs]]
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Projection is defined by renaming all channels to ones without parameters. The
check for trace inclusion can be carried out by asking FDR to verify the following
assertion:

assert Machine2Proj [T= mainProj

This returns a positive answer. Hence we have now succeeded in showing both
condition C1 and C2 for the two ”non-refinement” changes on the static view.
Thus the model transformations are valid according to our chosen notion of
behaviour preservation and can - due to transitivity of refinement - safely be
combined with any data refinement change, as for instance our first change to
the model (determinism of method).

6 Conclusion

The aim of this paper has been to derive techniques whereby model transforma-
tions can be verified even if the sub-transformations on the individual views are
not behaviour preserving. We have placed this work in the context of combina-
tions of Object-Z and CSP, however, it should be clear that the techniques we
have discussed could be transferable to other integrations. In particular, they are
applicable to (parts of) UML models, e.g. when written in the profile proposed
in [MORW04]. The work presented here covered the class of conjunctive changes,
and this can be combined with changes of type data refinement and process re-
finement. Thus, more complex model transformations can be verified as well if
they can be shown to be composed out of smaller, correct transformations.

Related work. Research on refinement and on model transformations is a very
broad field. In relation to our work it might best be classified using the following
two criteria. The first one is the number of views treated. There are (a large number
of) approaches to refinement/refactoring/model transformations treating a single
view only (or multiple views, but separately), e.g. [LB98, MS04, MT04, PR03],
[SPTJ01, KHK+03, BHTV04, KHE03, Whi02] and all classical definitions of
refinement, but there is only a small number of approaches treating multiple
views together [BPPT03, DS03, TS02]. A second criterion for classification are
the techniques employed. While a lot of a work is carried out on defining model
transformations, most with the ultimate goal of automating them, others are
working on a posteriori verifying model transformations. The first category is
sometimes also called the operational and the second one the relational approach.
According to this classification our work falls into the category verifying multiple
view transformations. We shortly comment on some related approaches.

Our approach uses a standard notion of refinement as a correctness criterion
for model transformations. The use of refinement concepts can for instance also
be found in [MS04] (Object-Z class refinement), [BHTV04] (refinement between
graph transformation systems), [PR03] (refinement of data-flow architectures)
and [TS02] (CSP process refinement). Transformations involving more than one
view are treated in [BPPT03] where refactorings for class diagrams and (simple)
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consecutive modifications on state machines and sequence diagrams are defined.
Relational approaches, i.e. validations of transformations, involving more than
one view can be found in [DS03] where Object-Z/CSP classes are split, and in
the work of Schneider and Treharne (e.g. [TS02]). The latter have considered the
refinement of integration of CSP and B, and have discussed sufficient conditions
such that the structure of a system changes. They for example isolate conditions
by which refinements can be checked which are not compositional. This is similar
to what we wish to achieve here. But the work looks at the general scenario,
whereas our aim was to exploit the consequences of a particular situation.

Future work. A further paper will explore the extension to situations where
we have simultaneous changes in the CSP part whereby new events are added
and when new operations are added in the Object-Z part. We are furthermore
interested in developing transformation patterns which can then by construction
guarantee behaviour preservation. This is already partly the case since we had
a syntactic check of one condition.
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Abstract. The problem of finding an approximation to a labeled Markov transi-
tion system through hyperfinite transition systems is addressed. It is shown that
we can find for each countable family of stochastic relations on Polish spaces
a family of relations defined on a hyperfinite set that is infinitely close. This is
applied to Kripke models for a simple modal logic in the tradition of Larsen and
Skou. It follows that we can find for each Kripke model a hyperfinite one which
is infinitely close.

1 Introduction and Motivation

The methods of non-standard analysis, originating with Robinson and Hewitt, and go-
ing back as far as Newton and Leibniz, permit to combine the simplicity of finite mod-
els with the elegance of general approaches. The method of relating these seemingly
incompatible ways of looking at things may roughly be described through the follow-
ing pattern (see e.g. [14]): first, the original problem is translated into a non-standard,
preferably hyperfinite setting, then it is solved in this context, preferably with finite
methods, and it is finally cast back into the original setting through techniques like
taking standard parts. An instance of this approach to probabilistic problems may be
studied with Anderson’s beautiful representation of Brownian motion [16, § II.3]. In
fact, probability theory and its applications are a field in which this setting in the past
has turned out to be most fruitful. Not surprisingly, mathematical economics with its
strong orientation towards measure theoretic methods is another field in which these
methods bear fruit. For example, consider the case that there is a universe of customers
with each individual having infinitely small influence, but that, as a whole, the cus-
tomers’ influence on the market is not negligible. It seems to be difficult to model this
situation within the finite/infinite dichotomy; using methods from non-standard analy-
sis, however, yields satisfactory models, see [20].

When looking at stochastic models in concurrency, a similar problem occurs: gen-
eral models give general insight into the problems at hand, but finite models are easier
to handle, although they sometimes tend to oversimplify the mathematical structure,
thereby concealing its proper nature. It gives usually more insight into modeling a prob-
lem using a general, continuous model, but these models tend on the other hand in all
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their generality to be difficult to handle. The proverbial best of two worlds would be
a model which argues from a finite point of view, but which also permits casting its
results into a general framework.

This paper proposes a way of combining the infinite and general approach with a
finite one. We show that each labeled Markov transition system is approximated by a
hyperfinite one, hence by a system which is based on a finite scenario. This bridges the
gap — appearing to be insurmountable — between seemingly inaccessible infinite prob-
abilistic transition systems on the one hand and their finite, less complicated cousins on
the other hand. We show that this idea may be carried over to probabilistic Kripke mod-
els for modal logic (which have at their very heart labeled Markov transition systems):
given a model for a modal logic, we can find an infinitely close hyperfinite model.

Technically, we need to make a topological assumption for this to work: the state
spaces of the transition systems should be Polish. These spaces underlie most investi-
gations in this area anyway (take [6, 11, 7, 21] as samples). We cast the problem into
a slightly more general form: given a countable family of stochastic relations between
Polish spaces X and Y , we investigate finding stochastic relations on hyperfinite spaces
that are infinitely close. This scenario is then utilized for the case of labeled Markov
transition systems, and for Kripke models of a simple modal logic with a given set of
actions.

The paper is organized as follows: section 2 discusses some preliminaries, it chiefly
defines stochastic relations and transition systems. Section 3 shows that we can find
a hyperfinite approximation for the general scenario and specializes this to transition
systems; this section makes essential use of Loeb’s and Anderson’s work on the relation
between standard and non-standard measures. Section 4 defines two sorts of Kripke
models, and an approximation result is established as well. Related and further work
are indicated in sections 5 and 6. Appendix A gives a very brief overview of the notions
of non-standard analysis that are used in this paper.

2 Stochastic Relations

This section collects some basic facts from topology and measure theory for the reader’s
convenience and for later reference. It defines stochastic relations.

A Polish space (X, T ) is a topological space which is second countable, i.e., which
has a countable dense subset, and which is metrizable through a complete metric. A
measurable space (X,A) is a set X with a σ-algebraA. The Borel sets B(X, T ) for the
topology T are the smallest σ-algebra on X which contains T . Given two measurable
spaces (X,A) and (Y,B), a map f : X → Y isA - B-measurable whenever f−1 [B] ∈
A for all B ∈ B.

If the σ-algebras are the respective Borel sets of some topologies on X and Y , resp.,
then a measurable map is called Borel measurable or simply a Borel map. The real
numbers R carry always the Borel structure induced by the usual topology which will
usually not be mentioned explicitly when talking about Borel maps.

When the context is clear, we will write down topological or measurable spaces
without their topologies or σ-algebras, resp., and the Borel sets are always understood
with respect to a topology under consideration.
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Denote for a measurable space (X,A) by S (X,A) the set of all subprobability
measures on (X,A) which is equipped with the weak*-σ-algebra for a measurable
structure. The latter σ-algebra is the smallest σ-algebra on S (X,A) which renders all
maps μ �→ μ(D) measurable, where D ∈ A. If X is a Polish space, then S (X) is
Polish in the weak topology. This topology is the smallest topology on S (X) which
renders all evaluation maps μ �→

∫
X f dμ continuous, where f : X → R is continuous

and bounded. It is well known that the weak*-σ-algebra constitutes the Borel sets of
the weak topology.

Definition 1. Given two Polish spaces X and Y, a stochastic relation K : X � Y
between X and Y is a Borel map from X to S (Y ).

It can be shown that a stochastic relation is just a morphism in the Kleisli category for
the monad that has the subprobability functor as its functorial part [13]. It is this analogy
that makes a stochastic relation a relation: set theoretic relations are just the morphisms
in the Kleisli category for a monad coming from the powerset functor. Note that we talk
here about monads in the sense of categories; the later use of monads will refer to their
use in non-standard topology1. In probability theory, a stochastic relation is known as
a sub-Markov kernel or a transition subprobability. Hence K : X � Y is a stochastic
relation from X to Y iff

1. K(x) is a subprobability measure on Y for all x ∈ X ,
2. x �→ K(x)(D) is a measurable map for each measurable set D ⊆ Y .

An A - B- measurable map f : X → Y between the measurable spaces (X,A) and
(Y,B) induces a map S (f) : S (X,A)→ S (Y,B) upon setting for μ ∈ S (Y,B) and
D ∈ B

S (f) (μ)(D) := μ(f−1[D])

It is easy to see that S (f) is measurable. This observation makes S an endofunctor on
the category of measurable spaces with measurable maps as morphisms [13, 10].

Hyperfinite stochastic relations are defined as the non-standard counterparts to finite
stochastic relations. Clearly, if X and Y are finite sets, then a map p : X × Y → [0, 1]
is a stochastic relation iff ∀x ∈ X :

∑
y∈Y p(x, y) ≤ 1 holds. Now a translation from

finite to hyperfinite sets will require the same constraint translated, hence this time
not in the unit interval [0, 1] but in its non-standard counterpart ∗[0, 1]. In addition we
require such a relation to be an internal map; if domain and range of a relation can be
represented in terms of standard notions, the relation should be as well. This leads to
the following definition.

Definition 2. Let X and Y be hyperfinite sets, then an internal map k : X × Y →
∗[0, 1] is called a hyperfinite stochastic relation k : X � Y between X and Y iff∑

y∈Y

k(x, y) ≤ 1

for each x ∈ X .

1 The reader is referred to Appendix A for a very brief discussion of non-standard analysis.
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We usually write k(x)(y) rather than k(x, y) and extend k to a map X×P (Y )→ ∗[0, 1]
upon setting

k(x)(B) :=
∑
y∈B

k(x)(y).

Note that arithmetic and comparisons are in this case performed in ∗R.
Finally, we need the notion of invariant sets w.r.t. an equivalence relation.

Definition 3. Let ∼ be an equivalence relation on a set M .

1. E ⊆M is called ∼-invariant iff m ∈ E and m ∼m′ together imply m′ ∈ E.
2. INV (C,∼) := {E ∈ C | E is ∼-invariant} are the ∼-invariant members of a

family C ⊆ P (M) of sets.

Consequently, E is ∼-invariant iff E =
⋃

m∈E [m]∼ , thus iff E is a union of equiv-
alence classes. The Borel sets that are invariant with respect to a countably gener-
ated equivalence relation are rather important in the theory of stochastic relations, see
e.g. [6, 11], and will be shown to play an important rôle here for constructing approxi-
mations as well.

3 Approximating Labeled Markov Transition Systems

This section will demonstrate that a labeled Markov transition system can be approxi-
mated through a hyperfinite one.

Definition 4. Let A be a countable set of actions, and assume that we have for each
action a ∈ A a stochastic relation Ka : S � S. Then (S, (Ka)a∈A) is called a labeled
Markov transition system. It is called standard, if S is Polish, and hyperfinite, if S is
hyperfinite, and if in addition all Ka are internal maps.

Thus a labeled Markov transition system models probabilistic state transitions: if the
current state of the system is s ∈ S and the action a ∈ A is taken, then Ka(s)(B)
is the probability for the new state to be a member of set B. Since Ka(s)(S) < 1
is not excluded, it is possible that the system does not enter a next state at all, for
example when a computation is modeled that does not terminate. If we are working
with a hyperfinite system, the transition laws Ka are internal maps, so we can assign to
each state s′ the probability Ka(s)(s′) with which it will be the next state after action
a. Since S is internal as well, we may write S = 〈(Sn)〉 for sets Sn that are finite
almost certainly (abbreviated as a. c.; see the explanation of terminology and notation
for non-standard sets in Appendix A). Similarly, Ka can be written as (Kn,a) with
Kn,a : Sn � Sn a. c. These relations are then standard relations between finite sets, so
that Ka(s)(s′) is really (the equivalence class of) a sequence (rn)n∈N of real numbers
rn with Kn,a(sn)(s′n) = rn a. c. We will demonstrate that we can approximate a
standard labeled Markov transition system by a hyperfinite one. Consequently, we are
able to express the general transition probabilities in a continuous state space through
the probabilities for appropriately chosen discrete events.

When considering Ka : S � S for Polish S, it will turn out that the respective spaces
for the domain and for the range will be dealt with in different ways. Thus we take Ka
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as an instance of a general stochastic relation X � Y with Polish spaces X, Y that may
happen to coincide. Neither are we bound formally too close to the actions; they form
a countable set, so we technically treat for the time being the standard labeled Markov
transition system (S, (Ka)a∈A) as an instance of a sequence (Kn)n∈N of stochastic
relations Kn with Polish domain and range spaces. Consequently, we fix in this section
Polish spaces X and Y as the respective domains and ranges for a countable family
(Kn)n∈N of stochastic relations Kn : X � Y .

The idea of an approximation is then captured in the following definition. It is based
on the following consideration. Suppose we have a stochastic relation K : X � Y . We
want to find for each element x in the domain of a given stochastic relation an element
from a hyperfinite set Xf that is infinitely close to x, and we want to find for the sub-
probability K(x) a reasonably structured sub-probability k(x) on a hyperfinite set Yf

that is infinitely close to K(x). Hence we can argue that the whole relation k : Xf � Yf

is infinitely close to K : X � Y , and the former is based on finite components, as
hyperfinite sets are. In order to formulate the notion of infinite closeness between two
measures we refer to the Loeb construction L(·). A brief summary of this construction
is provided in Appendix A.

A formal translation of these ideas leads to this definition.

Definition 5. Let K = (X, Y, K) be a stochastic relation with Polish X, Y . A hyper-
finite approximation to K is a hyperfinite stochastic relation (Xf , Yf , κ) with these
properties:

1. Xf ⊆ ∗X and Yf ⊆ ∗Y ,
2. for each x ∈ X there exists ζ ∈ Xf with x = stX(ζ) and K(x) = S (stY ) ◦

L(κ(ζ)).

Topological properties will be crucial in what follows. To be specific, because Y is Pol-
ish, the measure spaces (Y,B(Y ), Kn(x)) that are induced by the measures Kn(x) ∈
S (Y ) have rather special and very convenient properties that are summarized below.
The reader is referred to [18, Theorem 3.4.19] for a proof.

Proposition 1. Let T be a Polish space, μ ∈ S (T ) be a sub-probability measure. Then
the measure space (T ,B(T ), μ) has this property: For each Borel set B ⊆ S and each
ε > 0 there exists a compact set C ⊆ B with μ(B \ C) < ε. -

This property means that (T ,B(T ), μ) is a Radon space (sometimes the property that
the measure of each Borel set can be approximated by the measure of a compact subset
is called tightness). We will need this property because we will refer to work done for
approximating measures on Radon spaces [1, 2].

Given x ∈ X, n ∈ N, each Kn(x) is a subprobability measure on the Borel setsB(Y )
of Y . By the usual standard procedure, Kn(x) is extended to the universally measurable
sets U (B(Y )) of Y ; denote this extension again by Kn(x). This family {Kn(x) | x ∈
X, n ∈ N} of measures may be approximated on a hyperfinite measure space.

Lemma 1. There exists a hyperfinite set Yf with a hyperfinite set algebraAf ⊆P (Yf ),
for each x ∈ X a finitely additive measure kn,f (x) onAf and aAf−B(Y )-measurable
map S : Yf → Y with Kn(x)(B) = L(kn,f (x))(S−1 [B]) for all n ∈ N, x ∈ X and
B ∈ B(Y ).
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The proof of Lemma 1 follows Anderson’s proof [1, Corollary 3.4]. Some minor mod-
ifications take the fact into account that we do want to approximate a whole family of
measures rather than a single one. The present proof is broken into a series of auxiliary
statements.

We show first that a suitable algebra exists on which we can define our measures.
The argumentation is very similar to that used by Cutland in the proof of [4, Theorem
1.14] or by Anderson in [1, Corollary 3.4]. It is noted that the algebra constructed here
is independent of any measure; this is different from Anderson’s argument. We provide
the argument explicitly for making the paper self-contained.

Lemma 2. There exists a hyperfinite algebra Gf on ∗Y with

{∗C | C ∈ U (B(Y ))} ⊆ Gf ⊆ ∗U (B(Y )) .

Proof. Given a finite subset F of U (B(Y )), there exists a finite algebra AF with F ⊆
AF . Consequently, the family of algebras {A{C} | C ∈ U (B(Y ))} has the finite
intersection property, so the set⋂

{∗A{C} | C ∈ U (B(Y ))}

is not empty by the Enlargement property (see Appendix).

The algebra Gf induces an equivalence relation∼Gf
on ∗Y upon setting

y1 ∼Gf
y2 iff ∀A ∈ Gf : y1 ∈ A⇔ y2 ∈ A.

It is plain that each element of Gf is an ∼Gf
-invariant set. The ∼Gf

-equivalence class
of y is denoted by [y]Gf

. Since

[y]Gf
=

⋂
{A | A ∈ Gf , y ∈ A} ∩

⋂
{∗Y \A | A ∈ Gf , y /∈ A},

and since the power set of a hyperfinite set is hyperfinite, the factor space is hyperfinite
again.

The classes for near standard elements of ∗Y are related to the monads of the respec-
tive standard parts. This property is called S-separation in [1].

Lemma 3. Let y ∈ ns(∗Y ) be a near standard element of ∗Y , then its class [y]Gf
is

contained in the monad monad(stY (y)). Moreover, ∼Gf
is contained in the kernel of

stY .

Proof. Let T be an open neighborhood of stY (y), then by construction monad(stY (y))
⊆ ∗T , and since plainly y ∈ monad(stY (y)), we find that y ∈ ∗T. The set T is open,
hence it is universally measurable, consequently we know that ∗T ∈ Gf , thus ∗T is
∼Gf

-invariant. But this entails [y]Gf
⊆ ∗T. Since T was arbitrary, we conclude that

[y]Gf
⊆

⋂
{∗T | T open, y ∈ T } = monad(stY (y)).

The second part [1, Remark 3.2] is rather immediate: if stY (y1) ∈ G, and y1 ∼Gf
y2,

then y2 ∈ [y1]Gf
⊆ monad(stY (y1)), thus stY (y2) = stY (y1) ∈ G.
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Corollary 1. The inverse image st−1
Y [G] of an arbitrary G ⊆ Y is ∼Gf

-invariant. -

Proof. (of Lemma 1)
0. It can be shown that ns(∗Y ) is a universally measurable subset of ∗Y with

∀x ∈ X : L(∗K(x))(∗Y \ ns(∗Y )) = 0,

thus we may and do assume that ∗Y = ns(∗Y ).
1. Construct Gf according to Lemma 2, define the hyperfinite set Yf := ∗Y /Gf and

letAf be the terminal algebra on Yf with respect to the factor map ηGf
: ∗Y → Yf and

INV
(
L(Gf ),∼Gf

)
, so that

Af = {A ⊆ Yf | η−1
Gf

[A] ∈ INV
(
L(Gf ),∼Gf

)
}.

Define S := stY ◦ η−1
Gf

, then S is well-defined by the second part of Lemma 3.

Moreover, S is Af -B(Y )-measurable. First, one notes that η−1
Gf

[
ηGf

[G]
]

= G for

each ∼Gf
-invariant G, and then one notes from [1, Theorem 3.3] that st−1

Y [B] ∈
INV

(
L(Gf ),∼Gf

)
for each Borel set B ∈ B(Y ). This settles measurability.

2. Put for n ∈ N, x ∈ X and A ∈ Af kn,f (x)(A) := ∗Kn(x)(η−1
Gf

[A]), then
kn,f : Af → ∗[0, 1] is an internal map. We have for each x ∈ X and each Borel set
B ∈ B(Y )

Kn(x)(B) = L(∗Kn(x))(st−1
Y [B])

= L(kn,f (x))(ηGf

[
st−1

Y [B]
]
)

= L(kn,f (x))(S−1 [B]).

This caters for the range of the stochastic relations in question. Summarily, it says that
we can find for Kn(x) a measure defined on a hyperfinite algebra which comes infi-
nitely close to Kn(x) but has the characteristics of a finite measure, i.e., is concentrated
on points. This construction can be performed in a way which makes the domain for the
approximating measure independent of Kn(x).

We will turn to the domain of x �→ Kn(x) now and show that there can be found a
hyperfinite set the members of which will be infinitely close to the members of X .

Lemma 4. There exists a hyperfinite set F ⊆ ∗X so that

1. given x ∈ X there exists ζ ∈ F such that stX(ζ) = x
2. S (stX) ◦ L(∗Kn)(ζ) = Kn(stX(ζ)) for all ζ ∈ F, n ∈ N.

Proof. 0. It is no loss of generality to assume that Kn is a weakly continuous map
X → S (Y ) for each n ∈ N, where the latter space has the weak topology. In fact,
let T be the given topology on X . Since the map Kn : X → S (Y ) is measurable,
and since S (Y ) is a Polish space in the topology of weak convergence, we can find by
[18, Corollary 3.2.6, Observation 2] a topology T ′ with T ⊆ T ′ such that the Borel
sets of the given topology coincide with the Borel sets of T ′ and such that each Kn is
continuous with respect to T ′ and the weak topology on S (Y ) .
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1. We can find a hyperfinite set F0 with X ⊆ F0 ⊆ ∗X ([4, Theorem 1.14]). Since X
is Polish, it has a countable dense subset (xn)n∈N, hence by Comprehension (see
Appendix) we can find an internal set F := {xN | N ∈ ∗N} ⊆ F0 that extends
this sequence. Because F is an internal set with F ⊆ F0, and F0 is hyperfinite, F
is hyperfinite as well.

2. Fix n ∈ N. Since Kn : X → S (Y ) is continuous when S (Y ) has the weak
topology, we know that ∗Kn [monad(x)] ⊆ monad(Kn(x)) holds for every x ∈ X
by [16, Proposition III.2.3] (the monad on the right hand side is taken with respect
to the weak topology on S (Y ), the one on the left hand side with respect to X).

3. Fix x ∈ X . Since (xn)n∈N is dense, we can find for x ∈ X an index N ∈ ∗N
(which is possibly infinite) such that stX(xN ) = x. Thus xN ∈ monad(x), hence
∗Kn(xN ) ∈ monad(Kn(x)). Thus we have Kn(x) = stS(Y )(∗Kn(xN )). Because
∗Kn(x)(∗Y \ ns(∗Y )) = 0, we infer from [2, Lemma 2] that stS(Y )(∗Kn(xN )) =
L(∗Kn(xN )). Thus F is the desired hyperfinite set.

Summarizing, we have established that a stochastic relation on Polish spaces has a
hyperfinite approximation:

Proposition 2. For each countable set (Kn)n∈N of stochastic relations Kn = (X, Y,
Kn) over Polish spaces there exists a family (κn)n∈N of hyperfinite stochastic relations
κn : Xf � Yf so that (Xf , Yf , κn) approximates (X, Y, Kn) for each n ∈ N.

Proof. 1. The remarks made at the beginning of the proof of Lemma 4 indicate that it
is no loss of generality to assume that Kn : X → S (Y ) is continuous. Construct the
hyperfinite set Xf as in Lemma 4 and (Y ′

f ,A′
f , kn,f ) as in Lemma 1. Pick from each

class [y]Gf
an element, and collect all these elements in the set Yf . This results in an

internal set. Note that the singleton {[y]Gf
} is in A′

f for each y ∈ Yf , since A′
f is an

algebra, and since [y]Gf
∈ INV

(
L(Gf ),∼Gf

)
.

2. Define for ζ ∈ Xf , y ∈ Yf κn(ζ)(y) := kn,f (ζ)([y]Gf
), then κn : Xf × Yf →

∗[0, 1] is internal, since kn,f is. Consequently, the assertion follows from Lemma 4 and
Lemma 1.

In particular we have

Corollary 2. Each stochastic relation over Polish spaces has a hyperfinite approxima-
tion. -

Looking at relations Kn : S � S that model state transitions, the construction leading
to Proposition 2 does not warrant that the approximating hyperfinite relation κn : Xf �
Yf may be used to model state transitions as well. This is so since the domain and the
range of the approximating relation are different due to being constructed with different
goals in mind: the approximation for the domain identifies a near standard element
for each element in the domain, whereas the approximation for the range has a near
standard element for the associated measure as a target.

We return to standard labeled Markov transition systems and show that we are able
to approximate them through their hyperfinite cousins.
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Corollary 3. Let (S, (Ka)a∈A) be a standard labeled Markov transition system for a
Polish state space S, then there exists a hyperfinite labeled Markov transition system
(Sf , (κa)a∈A) so that κa approximates Ka for each a ∈ A.

Proof. Construct Sd,f , Sr,f and κ0
a : Sd,f � Sr,f as in the proof of Proposition 2. It is

no loss of generality to assume that Sd,f and Sr,f are disjoint. Define Sf := Sd,f∪Sr,f ,
then Sf ⊆ ∗S is hyperfinite, and define κa : Sf � Sf through

κa(σ)(s) :=
{

κ0
a(σ)(s), σ ∈ Sd,f , s ∈ Sr,f ,

δσ(s), otherwise.

(δσ is the Dirac measure on σ). Then is it immediate that this constitutes a hyperfinite
approximation to Ka : S � S.

4 Approximating Models

Given a probabilistic model S for a simple modal logic, we will approximate this model
through a hyperfinite one. This means that for each formula ϕ and each state s of S
which satisfies ϕ we can find a state in the hyperfinite model which is both infinitely
close to s and which also satisfies ϕ. This property will be shown to hold conversely
as well: if a state σ in the hyperfinite model satisfies a formula, then its standard part
oσ = st(σ) satisfies ϕ.

We work with a simple modal logic, which will be defined now. Fix a countable set
P of atomic propositions, A is again the countable set of actions. The formulas of logic
L are defined through

ϕ ::= � | p | ϕ ∧ ϕ | ¬ϕ | 〈a〉qϕ

Here p ∈ P is an atomic proposition, a ∈ A is an action, and q ∈ Q∩ [0, 1] is a rational
number. The informal interpretation for state s satisfying formula 〈a〉qϕ reads that we
can make an a-move in a state s to a state that satisfies ϕ with probability greater than q.

Accordingly, a standard model S = (S, (Ka)a∈A, V ) for logic L is defined through a
state space S, which is assumed to be a Polish space, for each action a ∈ A a stochastic
relation Ka : S � S and for each atomic proposition p ∈ P a Borel set V (p) ∈ B(S)
of states in which p is assumed to hold. Define inductively the satisfaction relation |=
with respect to S together with the sets [[ϕ]]S := {s ∈ S | S, s |= ϕ} of states in which
formula ϕ holds:

1. S, s |= � is true for all s ∈ S, thus [[�]]S = S.
2. S, s |= p⇔ s ∈ V (p) for all p ∈ P, thus [[p]]S = V (p).
3. S, s |= ϕ1 ∧ ϕ2 iff S, s |= ϕ1 and S, s |= ϕ2, thus [[ϕ1 ∧ ϕ2]]S = [[ϕ1]]S ∩ [[ϕ2]]S .
4. S, s |= ¬ϕ iff S, s |= ϕ is false, thus [[¬ϕ]]S = S \ [[ϕ]]S
5. S, s |= 〈a〉qϕ iff Ka(s)([[ϕ]]S ) ≥ q, thus [[〈a〉qϕ]]S = {s ∈ S | Ka(s)([[ϕ]]S ) ≥ q}.

The following is well known (e. g. [11, Lemma 5.1]):

Lemma 5. Let S be a standard model for logic L. The set [[ϕ]]S is Borel for each
formula ϕ. -
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Standard models were introduced and discussed as probabilistic variants of Kripke
models in [15, 6, 8] for a simple variant of the Hennessy-Milner logic and studied in
connection with bisimulations. This notion and the study of bisimulations was then
extended in [11] to general modal logics with operators of arbitrary arity [3].

A hyperfinite model F = (T , (ka)a∈A, W ) for logic L is defined through a hyper-
finite state space T , for each action a ∈ A a stochastic relation ka : T � T and for
each atomic proposition p ∈ P a hyperfinite set W (p) ⊆ T of states in which p is
assumed to hold. The satisfaction relation |= and the sets [[·]]H are defined in exactly
the same way for a hyperfinite modelH as for a standard model, e.g. H, t |= 〈a〉qϕ iff
ka(t)([[ϕ]]H) ≥ q holds (note that the comparison is done in ∗[0, 1]).

The following statement shows that we do not leave the realm of hyperfinite sets with
[[·]]H; it is a companion to Lemma 5.

Lemma 6. Let H be a hyperfinite model for logic L. The set [[ϕ]]H is a hyperfinite set
for each formula ϕ.

Proof. We proceed by induction on the structure of ϕ. There is nothing to show for �,
and for atomic propositions, and since the intersection of two hyperfinite sets is again
hyperfinite, conjunction is covered, too. If [[ϕ]]H is hyperfinite, [[¬ϕ]]H = S \ [[ϕ]]H
is hyperfinite as well (this is so because: if a set is not an element of an ultrafilter, its
complement is).

So we need to demonstrate that [[〈a〉qϕ]]H = {t ∈ S | ka(t)([[ϕ]]H) ≥ q} is a
hyperfinite set, provided [[ϕ]]H is one. The assumption that ka is an internal map implies
that for each hyperfinite set F the map t �→ ka(t)(F ) =

∑
t′∈F ka(t)(t′) constitutes an

internal function. From this observation the assertion follows.

The notion of an approximating model is quite straightforward. Roughly, a standard
model S is approximated by a hyperfinite modelH iff each state s with S, s |= ϕ is the
standard part of a state σ of H with H, σ |= ϕ, and vice versa, where ϕ is an arbitrary
formula in L. To be specific:

Definition 6. Let S be a standard model with state space S. Then the hyperfinite model
H with state space Sf is a hyperfinite approximation to S iff st−1

Sf
[[[ϕ]]S ] = [[ϕ]]H holds

for all formulas ϕ of logic L, where stSf
is the restriction of the standard map stS to Sf .

We show that for being an approximation to a given standard model it is sufficient
to approximate the underlying transition system, and to test the validity sets for the
atomic propositions (in addition to the requirement of approximation for the transition
systems).

Proposition 3. LetH = (Sf , (ka)a∈A, W ) be a hyperfinite, and S = (S, (Ka)a∈A, V )
be a standard model. Assume that (Sf , (ka)a∈A) approximates (S, (Ka)a∈A). If
W (p) = st−1

Sf
[V (p)] for each atomic proposition p ∈ P, then H is a hyperfinite ap-

proximation to S.

Proof. 1. The proof proceeds by induction on the formula ϕ. The cases � and p for
p ∈ P are trivial, so are Boolean combinations of formulas.
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2. Assume for the induction step that the assertion is true for formula ϕ, and let
a ∈ A, 0 ≤ q ≤ 1 a rational number. If s ∈ S, σ ∈ Sf with stSf

(σ) = stS(σ) = s, then

Ka(s)([[ϕ]]S ) ≥ q ⇔ Ka(stS(σ))([[ϕ]]S ) ≥ q (1)

⇔ L(ka(σ))(st−1
Sf

[[[ϕ]]S ]) ≥ q (2)

⇔ L(ka(σ))([[ϕ]]H) ≥ q (3)

⇔ ka(σ)([[ϕ]]H) ≥ q (4)

Equivalence (2) holds because ka is an approximation to Ka, (3) is just the induc-
tion hypothesis, (4) refers to the construction of the Loeb measure (and the obser-
vation that t ≥ r iff stR(t) ≥ r holds for r ∈ R, t ∈ ∗R). But this means σ ∈
[[〈a〉qϕ]]H iff stSf

(σ) ∈ [[〈a〉qϕ]]S , establishing the assertion.

On account of being able to approximate labeled Markov transition systems, we are
able to approximate standard models as well.

Proposition 4. Let S = (S, (Ka)a∈A, V ) be a standard model, then there exists a hy-
perfinite modelH which approximates S.

Proof. Let (Sf , (κa)a∈A) be a hyperfinite approximation to (S, (Ka)a∈A) according to
Corollary 3. Define the model H := (Sf , (κa)a∈A, W ) with W (p) := st−1

Sf
[V (p)] for

each p ∈ P. Then Proposition 3 entails that this is a hyperfinite approximation.

Consider the theory ThS(s) := {ϕ | S, s |= ϕ} of a state s of S. We see that we can
find a hyperfinite modelH with the property that ThH(σ) = ThS(st(σ)) for each state
σ of H. In addition each state s is infinitely close to a state σ in H which has the same
theory.

It should be noted that the logic L does not enjoy properties that make it unique for
the approximation discussed here. At the core of the discussion lies the approximability
of a labeled Markov transition system by a hyperfinite one, around which the prop-
erty the approximation of models may be grouped. Thus we could easily develop the
same approximation result for a negation free logic, and we could even omit the atomic
propositions, so that we would discuss the same logic that is taken e.g. in [6] as a start-
ing point. Interestingly, we could replace conjunction by disjunction without having to
be afraid of measure theoretic complications.

(EXCURSION: Conjunction ϕ1 ∧ ϕ2 of formulas implies [[ϕ1 ∧ ϕ2]]M = [[ϕ1]]M ∩
[[ϕ2]]M. This observation renders the set {[[ϕ]]M | ϕ is a formula in the logic} a ∩-
stable generator of a σ-algebra that has important model-theoretic properties;
∩-stability is important since it helps to apply the π-λ-Theorem that is so helpful in
measure theory. END EXCURSION)

This discussion indicates that the approximation result given in Proposition 4 is a sam-
ple for a whole family of similar results, parameterized by the logic under consideration.
We selected logic L as a paragon; the proofs help illustrating the techniques which are
used to cast the result from transition systems into the logical framework.
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5 Related Work

An approximation of labeled Markov transition systems is given in [5] that approxi-
mate a systems using simpler ones; the approximants are given through suitable quo-
tients in terms of a simple logic that is approximated by the system. This work improves
upon a first metric approximation proposed in [7], that was oriented towards a logic as
well. The approximation has been investigated with respect to convergence for various
topologies that are important in domain theory in [21]. Since there is a natural interplay
between convergence and hyperfinite approximation (non-standard methods were de-
veloped for modeling processes related to convergence, after all), these approximation
results relate to the same spirit as the present proposal. It might be worth noting that
the present approximation for transition systems has been developed independently of
a particular logic; all that matters is given in terms of the measures and the underlying
Polish topologies.

Another line of development is reported in the book [12] by Fajardo and Keisler.
It discusses what is called adapted spaces. These spaces are given through a family
of σ-algebras indexed by [0, 1] and are of use in adapted probability logic as a logic
for studying continuous time stochastic processes. Fajardo and Keisler investigate the
relationship between the standard and the hyperfinite versions. This does not involve
approximation properties of labeled Markov transition systems, and Kripke models for
modal logics do not enter the discussion either.

6 Conclusion and Further Work

This paper proposes the use of hyperfinite models for approximating labeled Markov
transition systems and, more general, for stochastic relations on Polish spaces. It is
established that

– For each transition system a hyperfinite system can be found that is infinitely close
to the given one; this also holds for each countable family of stochastic relations.
Here closeness is not measured in terms of a metric but rather through infinitesi-
mals.

– Each probabilistic Kripke model for a modal logic with a countable number of
diamonds is approximated infinitely well by a hyperfinite one.

It is shown that the sets of theories for the standard model and for the hyperfinite
approximation coincide. This brings about a slight déjà-vu to the equivalence relation
that plays a rôle in the famous Hennessy-Milner Theorem on the equivalence of bisim-
ulations and having the same sets of theories: we say that two models E and F are
HM-equivalent iff

{ThE(e) | e is a world in E} = {ThF(F ) | f is a world in F}

Then E and F are bisimilar iff they are HM-equivalent. This holds for modal logics
under a light assumption [3], and can be shown to hold for their stochastic counterparts
as well [11].
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This discussion leads straight to the problem of characterizing the approximation be-
havior of morphisms. Suppose F : R1 → R2 is a morphism between stochastic relations,
and suppose furthermore that the hyperfinite stochastic relations ri are infinitely close to
Ri (i = 1, 2), can we find internal maps so that we have a morphism f : r1 → r2? This
would permit translating constructions that are easily carried out for finite stochastic
relations, and that can be translated to hyperfinite ones to the general Polish, and (via
some standard constructions, see [10]) probably even to the analytic case. For example,
it is not difficult to establish the existence of semi-pullbacks for hyperfinite relations,
but it requires quite an effort doing so for the general Polish or analytic case [9]. A
non-standard approximation would be of tremendous help here.
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A Appendix: Some Notions from Non-standard Analysis

We give a very brief summary of the constructions needed from non-standard analysis.
For a comprehensive treatment, the reader is referred to e.g. [19], for a tutorial with an
emphasis on measure and probability to [4, 16].

Internal Sets. Let S be a set and U be a free ultrafilter on N. We say that a predicate P on
N holds almost certainly (abbreviated by a.c.) iff {n ∈ N | P (n)} ∈ U . Define on SN

the equivalence relation �U through (xn)n∈N �U (yn)n∈N iff xn = yn a.c. Denote by
[(xn)]U the associated equivalence class, and by ∗S the factor space SN/�U . Similarly,
we define for a sequence (An)n∈N of sets 〈(An)〉 := {[(xn)]U | xn ∈ An a.c.}, and
∗A = 〈(A, A, A, . . .)〉. A is embedded to ∗A through a �→ [(a)]U .

Now construct for a set M a sequence Vn(M) of sets inductively through

V0(M) := M,

Vn+1(M) := Vn(M) ∪ P (Vn(M)) ,

V (M) :=
⋃
n∈N

Vn(M).

V (M) is called the superstructure associated with M . If A ∈ V (∗S), then ∗A is
called an internal set (over S); if A is of the form 〈(B, B, . . .)〉 for some B ∈ V (∗S),
then A is called a standard set. It is known that a set is internal iff it is an element
of some standard set [16, Lemma II.1.3]. Thus an internal set A has a representation
as 〈(An)〉 for a suitable sequence (An)n∈N of sets. All other sets are called external.
Note that e. g. N is external (over R). If A = 〈(An)〉 is an internal set such that the
cardinalities |An| are finite a.s. then A is called hyperfinite.

A map f : A→ B is characterized as an internal map between the internal sets A =
〈(An)〉 and B = 〈(Bn)〉 through a sequence (fn)n∈N of maps so that fn(an) ∈ Bn

a.c. whenever an ∈ An a.c. A map f : A → B is extended in the obvious way to an
internal map ∗f : ∗A → ∗B. When the context is clear, we occasionally omit the star
from the notation.

We need two important properties:

Comprehension: For every internal set A and every function f : N → A there is an
internal function g : ∗N→ A extending f .
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Enlargement: If (Ai)i∈I is a collection of sets having the finite intersection property,
then

⋂
i∈I

∗Ai �= ∅.

Monads. If (X, T ) is an Hausdorff topological space, define for x ∈ X the monad
monad(x) of x as

monad(x) :=
⋂
{∗G | x ∈ G ∈ T }.

By the Enlargement property above, monad(x) �= ∅. Since X is Hausdorff, distinct ele-
ments have disjoint monads; note that the monad depends on the topology. An element
y ∈

⋃
x∈X monad(x) is called near standard; the set of all near standard elements of

X is denoted by ns(∗X). The standard part stX(x) of x ∈ ns(∗X) is the unique y ∈ X
with x ∈ monad(y); sometimes, ox is written for stX(x).

The Loeb Construction. An internal finitely additive measure space M = (X,A, μ)
consists of the internal set X , an internal algebra A ⊆ ∗P (X) on X and an internal
function μ : A → ∗R+. The function μ is additive, thus μ(A ∪ B) = μ(A) + μ(B),
whenever A, B ∈ A are disjoint. The associated Loeb space L(M) = (X, L(A), L(μ))
is a measure space (in the usual sense) with these components:

1. L(A) is the universal completion of the σ-algebra σ(A),
2. L(μ) is the extension of the finitely additive measure oμ : A → R+ to the σ-algebra

L(A) (where oμ : A �→ stX(μ(A)) maps A to the standard part of μ(A)).

The construction yielding the Loeb space L(M) from an internal finitely additive mea-
sure space M originates from [17] and is discussed at length e.g. in [4, § 3] or in [16,
II.1]. For convenience, we use here the universal completion of a measure space, this
is a little more restrictive than the commonly used completion induced by a particular
measure.
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Abstract. State space explosion is the hardest challenge to the effec-
tive application of model checking methods. We present a new technique
for achieving drastic state space reductions that can be applied to a
very wide range of concurrent systems, namely any system specified as
a rewrite theory. Given a rewrite theory R = (Σ, E, R) whose equa-
tional part (Σ, E) specifies some state predicates P , we identify a subset
S ⊆ R of rewrite rules that are P -invisible, so that rewriting with S
does not change the truth value of the predicates P . We then use S to
construct a reduced rewrite theory R/S in which all states reachable by
S-transitions become identified. We show that if R/S satisfies reason-
able executability assumptions, then it is in fact stuttering bisimilar to
R and therefore both satisfy the same CTL∗

−X formulas. We can then
use the typically much smaller R/S to verify such formulas. We show
through several case studies that the reductions achievable this way can
be huge in practice. Furthermore, we also present a generalization of our
construction that instead uses a stuttering simulation and can be applied
to an even broader class of systems.

1 Introduction

Although model checking is one of the most successful automated verification
techniques, there are real limitations to its applicability in practice. These limi-
tations are mostly related to the state space explosion problem. For example, as
the number of processes considered in a distributed system grows, the associated
state space may easily grow exponentially, particularly due to the system’s con-
currency. This can make it unfeasible to model check a system except for very
small initial states, sometimes not even for those.

For this reason, a host of techniques to tame the state space explosion
problem, which could be collectively described as state space reduction tech-
niques, have been investigated: bisimulation techniques, partial order reduc-
tion (POR) techniques, abstraction techniques, and so on (see for example
[20, 33, 22, 4, 9, 11, 19, 34, 32, 1, 21, 16]). The general idea is to transform the orig-
inal system into a simpler one (typically bisimilar or at least similar to the orig-
inal one) whose state space is small enough to model check properties. Transfer
results then ensure that the same property holds in the original system.
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This paper proposes a new such state space reduction technique within the
rewriting logic semantic framework, in which concurrent systems are formally
specified as rewrite theories [27]. In such specifications, the set of states is spec-
ified as an algebraic data type by an equational theory (Σ, E), and the system’s
transitions are specified by rewrite rules R that are applied modulo the equations
E. The rewrite theory specifying the system is then the triple R = (Σ, E, R).
The fact that rewriting logic has been shown to be a very general and expressive
semantic framework to specify concurrent systems [28, 25] makes our proposed
state space reduction technique applicable to a very wide range of concurrent
systems. Achieving a state space reduction typically requires discharging proof
obligations to verify that the reduction is correct. In this regard, the fact that the
state space is itself axiomatized by an equational theory (Σ, E) makes the tool-
assisted discharging of such proof obligations using equational theorem proving
techniques and tools much easier than if a non-logical specification formalism
had been used instead.

Our technique is based on the idea of invisible transitions, that generalize a
similar notion in POR techniques (see for example [5]). The basic setting is that
we assume a rewrite theory R = (Σ, E, R) in which a certain set P of state
predicates has been equationally axiomatized by some of the equations in E. R
then has an associated Kripke structure, whose labeling function associates to
each state (represented as an E-equivalence class of terms [t] in the initial algebra
TΣ/E) all those predicates in P that hold in [t] according to the equations E. We
then call a rewrite rule r in R P -invisible if in any rewrite step [t] −→ [t′] using r
the states [t] and [t′] satisfy the same state predicates, i.e., they are labeled in the
same way. Our state space reduction technique is then very simple: we identify
a subset S ⊆ R of rules such that all rules in S are invisible. We then define the
S-reduction of R = (Σ, E, R) as the rewrite theory R/S = (Σ, E∪S, R\S), that
is, we turn all rules in S into equations, thus collapsing the set of states from
TΣ/E to the quotient TΣ/E∪S. The intuitive idea, therefore, is that all states that
can be reached from a given state by repeated S-transitions can be collapsed into
a single one. In practice, as we show by means of several case studies in Section
4, the reductions obtained this way can be huge.

However, the above technique must meet an important executability require-
ment. The point is that, for E an arbitrary set of equations, rewriting modulo
E, which is the way transitions take place in the Kripke structure associated
to R = (Σ, E, R), is in general undecidable. Therefore, to be able to execute
and model check a rewrite theory in a rewriting logic language implementation
such as Maude [6, 7] we must require that the equations E are confluent and
terminating (perhaps modulo some axioms A) and that the rules R are strongly
coherent with respect to the equations E [35]. Intuitively, the coherence require-
ment means that we can identify a state [t] with the canonical form canE(t) of t
by the equations E, and that rewriting with equations E and with rules R com-
mutes in an appropriate sense, so that we can safely restrict our computations
with R to only rewrite E-canonical forms. Therefore, the executability require-
ment for our technique is that R/S = (Σ, E ∪ S, R\S) should be executable,
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that is, that E ∪S should be confluent and terminating, and that the rules R\S
should be strongly coherent with respect to E ∪ S (perhaps modulo axioms A).

We show in Section 3 that the above-mentioned executability requirements
on R/S, besides being absolutely essential to model check R/S in practice, en-
sure a further very important property, namely that R and R/S are stuttering
bisimilar, and therefore they satisfy exactly the same CTL∗

−X formulas. Fur-
thermore, to make our technique applicable to cases where a suitable set S may
not be available, we generalize it to allow enlarging a set of invisible rules S by
adding new invisible rules not in R to get a superset Ŝ ⊇ S. This gives rise to
a state space reduction R̂/Ŝ that is no longer stuttering bisimilar to R but is
nevertheless similar to it. This still allows us to verify ACTL∗

−X formulas for R
if we can model check them for R̂/Ŝ, but such model checking can now give rise
to spurious counterexamples. We illustrate how this more general technique is
also quite useful in practice by means of a client-server protocol in Section 4.3.
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Fig. 1. Restaurant State Space

We can make all these ideas concrete by means of an example which mod-
els the workflow in a simplistic restaurant with one waiter and two customers.
Customers have a flag indicating their status (waiting, ordered, or eating), so a
customer is represented as a pair C(id, f) with id an identifier and f the flag.
The waiter has also a status flag (free or order-taken). Therefore, the waiter is
represented by a term of the form W (f). The restaurant state is a set with a
waiter and two customers, with set union represented by a binary associative
and commutative juxtaposition operator “ ”. We have the following rewrite
rules R in our theory R = (Σ, A, R), where A consists of the associativity and
commutativity axioms for “ ”:
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s1 : W (free)C(1, waiting) −→ W (order-taken)C(1, ordered)
s2 : W (free)C(2, waiting) −→ W (order-taken)C(2, ordered)
s3 : W (order-taken) −→ W (free)
t1 : W (free)C(1, ordered) −→ W (free)C(1, eating)
t2 : W (free)C(2, ordered) −→ W (free)C(2, eating)

Figure 1 (a) shows the state space induced by the above rewrite rules from
an initial state with the waiter free and the two customers waiting.

Let us assume that the property φ that we are interested in is: “eventually
both customers eat”. This property can be expressed as formula /(e1∧e2) where
ei is true if the ith customer’s status is “eating” and false otherwise. Rewrite
rules s1, s2, and s3 do not change the truth value of the predicates e1 and e2.
One can observe that the rules in S = {s1, s2, s3} are confluent and terminating
and R\S is strongly locally coherent [35] with respect to S modulo axioms.
The reduced theory R/S (see the state space in Figure 1 (b), where each state
represents an S-equivalence class) is then stuttering bisimilar to the theory R.

Besides the small example used above to illustrate the main ideas, in Section 4
we show that our technique yields very drastic state space reductions in three
more substantial case studies involving well-known algorithms and applications.
Furthermore, in Section 5 we discuss in detail the discharging of the necessary
proof obligations ensuring that a proposed S-reduction R/S is both correct and
executable, and the kind of tool support necessary to facilitate such discharging
activities. We end with a discussion of related work and some concluding remarks
in Section 6.

2 Preliminaries

2.1 Termination, Confluence and Coherence in Rewrite Theories

A rewrite theory [27] is a triple R = (Σ, E, R) where (Σ, E) is an equational
theory with signature Σ and equations E, and where R is a set of conditional
rewrite rules of the form l −→ r if C. In this paper we assume that C is al-
ways an equational condition. Intuitively, if a concurrent system is modeled as
a rewrite theory R = (Σ, E, R), then the equational theory (Σ, E) defines the
system states (terms in TΣ/E) and the set of rewrite rules R specify the system’s
concurrent transitions.

Given two terms u, v ∈ TΣ, a one-step rewrite u
τ−→ v means that there

is a rule τ : l → r if C in R that can be applied to a subterm of u with a
ground substitution θ such that E |= θC and u rewrites to v by replacing the
subterm θ(l) by the subterm θ(r). We write u

R−→ v to mean that there is a rule
τ ∈ R such that u

τ−→ v. The notation R−→∗ denotes the reflexive and transitive
closure of the relation R−→. Set CanS includes all elements x ∈ TΣ such that no
rule in S is enabled at x. We define S−→!= {(x, y)|x S−→∗ y ∧ y ∈ CanS} and
x ↓S y ⇔ ∃z : x

S−→∗ z ∧ y
S−→∗ z. Rewriting over equivalence classes modulo

equations E is defined as follows: [t]E
r−→ [t′]E if and only if there are terms
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u and v such that u ∈ [t]E and v ∈ [t′]E and u
r−→ v. We define

R/E−→ by the

equivalence [t]E
R−→ [t′]E ⇔ t

R/E−→ t′.
A set S ⊆ R of rewrite rules is confluent modulo E in the theory (Σ, E, R)

if and only if ∀t, t′, t′′ ∈ TΣ : ([t]E
S−→∗ [t′]E ∧ [t]E

S−→∗ [t′′]E) ⇒ (∃w :
[t′]E

S−→∗ [w]E ∧ [t′′]E
S−→∗ [w]E). S is terminating if for all t there exists no

infinite chain of rewriting [t]E
S−→ . . .

S−→ . . . .

Definition 1. [35] In a rewrite theory R = (Σ, E, R), where E = E0 ∪ A with
E0 a (terminating) set of equations and A a set of equational axioms, R is called
locally strongly coherent with respect to E0 modulo A if

(t
R/A−→ t1 ∧ t

E0/A−→ t2) ⇒ (∃t3, t4 :

t2
E0/A−→! t3 ∧ t3

R/A−→ t4 ∧ t4 ↓E0/A t1)

t
R/A� t1

t2

E0/A

�

E0/A

∗

...................�

t3

E0/A !
�

.........
.............

R/A
� t4

∗

E0/A.....
.....

.....
....�

Strong local coherence is the main property to check to ensure executability of
a rewrite theory R = (Σ, E0 ∪A, R) when we have matching algorithms for the
equational axioms A. Viry shows that if the equations E0 are confluent and ter-
minating modulo A, then strong local coherence implies a more general strong
coherence property [35]. Strong coherence ensures that we can achieve the ef-
fect of rewriting with R in E0 ∪ A-equivalence classes by first computing the
E0 ∪ A-canonical form modulo A, and then rewriting that canonical form with
R modulo A.

2.2 Stuttering Simulations

Let us assume that the equational part (Σ, E) of a rewrite theory R = (Σ, E, R)
defines, among other things a set P of state predicates on the initial algebra
TΣ/E

1. We can then associate to R a Kripke structure [5] whose states are the
set TΣ/E,State for some designated sort State of states, whose labeling function
assigns to each state the predicates p ∈ P that provably hold in it using E, and
whose transition relation is the total closure R−→• of R−→, that is, we make R−→
into a total relation by adding identity transitions for each deadlock state. We
can then interpret any temporal logic formula, say in CTL∗ in R, namely by
interpreting it in its associated Kripke structure. For a more detailed presentation
on the relations between rewrite theories, Kripke structures and temporal logic,
with applications to model checking in Maude see [14].

We present some basic notions and results, used later on, about transition
systems, Kripke structures, and stuttering (bi-)simulations between them that
will apply in particular to the Kripke structures associated to rewrite theories.
1 Note that all the equivalent states modulo E satisfy the same set of predicates.
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Definition 2. Let A = (A,
A−→) and B = (B,

B−→) be transition systems and
let H ⊆ A × B be a relation. Given a path π in A and a path ρ in B, we say
that ρ H-matches π if there are strictly increasing functions α, β : N → N with
α(0) = β(0) = 0 such that, for all i, j, k ∈ N, if α(i) ≤ j < α(i + 1) and
β(i) ≤ k < β(i + 1), it holds that π(j)Hρ(k).

Definition 3. Given transition systems A and B, a stuttering simulation of
transition systems H : A −→ B is a binary relation H ⊆ A × B such that if
aHb, then for each path π in A starting at a there is a path ρ in B starting at b
that H- matches π.

Definition 4. Given Kripke structures A = (A,
A−→, LA) and B = (B,

B−→, LB)
over a set of predicates P , a stuttering P -simulation H : A → B is a stuttering
simulation of transition systems H : (A,

A−→) → (B,
B−→) such that if aHb

then LB(b) ⊆ LA(a). We call the stuttering P -simulation strict if aHb implies
LB(b) = LA(a). H is called a stuttering P -bisimulation if both H and H−1 are
stuttering P -simulations.

In [31], it is shown that (strict) stuttering simulations preserve the satisfaction of
ACTL∗

−X(P ) formulas. Also, [24, 3] state that stuttering bisimulations preserve
the satisfaction of CTL∗

−X(P ) formulas which can be derived by generalizing
the results from [31].

3 Invisible Transitions and the R/S Reduction

Definition 5. Given a rewrite theory R=(Σ, E, R) and having an equationally-
defined set of atomic predicates P , a rewrite rule τ : l → r if C in R is called
P -invisible if for any [t] ∈ TΣ/E and any u ∈ [t] such that u

τ−→ v, then for
each p ∈ P we have [t] |= p ⇔ [v] |= p. We denote by InvP (R) the set of all
P -invisible rewrite rules of R.

We call R/S = (Σ, S ∪E0 ∪A, T = R\S) the S-reduced theory of R = (Σ, E0 ∪
A, R). We are particularly interested in the S-reduced theory of R when S ⊆
InvP (R), S ∪E0 is confluent and terminating modulo A, and T is coherent with
respect to S ∪ E0 modulo A.

Theorem 1. Let R = (Σ, E0 ∪A, R) be a rewrite theory with P a set of equa-
tionally defined atomic predicates. Let S ⊆ R be a set of P -invisible rules such
that S ∪ E0 is confluent and terminating modulo A, and T = R\S is coherent
with respect to S ∪E0 modulo A. Then R and R/S are stuttering bisimilar.

Proof. (sketch) The relation H on which the bisimilarity is based is defined by
the quotient homomorphism H : TΣ/E 	 TΣ/E∪S. We need to prove that: (a)
H is a stuttering simulation; and (b) that H−1 is so too. Since H maps deadlock
states to deadlock states, and H−1 of a deadlock state always contains a deadlock
state, we can disregard deadlocks.
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(a) It suffices to show that for each path π in the underlying Kripke structure
of the theory R, (TΣ/E,

R−→•), there exists a stuttering equivalent path π′ in the

underlying Kripke structure of the S-reduced theory R/S, (TΣ/E∪S,
S/S−→•).

π must be of the following general form:

π : [s0]E
S−→∗ [t0]E

T−→ [s1]E
S−→∗ [t1]E

T−→ . . .
T−→ [sn]E

S−→∗ [tn]E
T−→ . . .

Since the rules in S are P -invisible, we know that L(si) = L(ti) for all i. Also, ob-
serve that by collapsing the S−→∗, we have [si]E∪S = [ti]E∪S . Then the following
path

π′ : [t0]S∪E
T−→ [t1]S∪E

T−→ . . .
T−→ [tn]S∪E

T−→ . . .

is stuttering equivalent to π and of course, by construction, it is a path in the
underlying Kripke structure of R/S.

(b) It suffices to show that for each path ρ in the underlying Kripke structure
of the theory R/S, (TΣ/E∪S, →R/S), there exists a stuttering equivalent path ρ′

in the underlying Kripke structure of the reduced theory R, (TΣ/E,
R−→•).

Assume that ρ is of the following general form:

ρ : [s0]S∪E
T−→ [s1]S∪E

T−→ . . .
T−→ [sn]S∪E

T−→ . . .

We show by construction that there exists a stuttering equivalent path ρ′ of the
following form:

ρ′ : [s′0]E
S−→∗ [t0]E

T−→ [s′1]E
S−→∗ [t1]E

T−→ . . .
T−→ [s′n]E

S−→∗ [tn]E
T−→ . . .

where s0 = s′0 and for all i, si ≡S∪E s′i, and therefore L(si) = L(s′i). H−1 then
relates the state [si]S∪E to all the states on [s′i]E

S−→∗ [ti]E which by invisibility
of S all satisfy the same set of predicates.

[si]S∪E
T−→ [si+1]S∪E implies that there are terms ui and ui+1 such that

si ≡S∪E ui
T−→ ui+1 ≡S∪E si+1. If s′i ≡S∪E si (meaning s′iHsi), then there is

a term ti such that si
S∪E−→! ti and s′i

S∪E−→! ti. Since ui ≡S∪E si, by confluence of
S ∪ E, we have ui

S∪E−→! ti. Therefore, by T being coherent with respect to S∪E0

modulo A, there exists a term s′i+1 such that ti
T−→ s′i+1 and s′i+1 ↓S∪E ui+1.

Since ui+1 ≡S∪E si+1, we have s′i+1 ≡S∪E si+1 (meaning that s′i+1Hsi+1).

si ≡S∪E ui
T� ui+1 ≡S∪E si+1

s′i
S

∗
�

≡

ti

! S∪E

�
T �

!

S∪E�
s′i+1

≡ ≡

Start by letting s′0 = s0. Since s′0 = s0, it trivially holds that s′0 ≡S∪E s0.
Inductively construct the path according to the above diagram. Note that by



State Space Reduction of Rewrite Theories Using Invisible Transitions 149

viewing S steps as τ -transitions, the above argument also shows that ≡S∪E is a
branching bisimulation relation [30]. ��
We have shown that, under the theorem hypothesis, the reduced rewrite the-
ory R/S is stuttering P -bisimilar with the original theory R. Therefore, (see
Section 2) for any φ ∈ CTL∗

−X(P )2 , and any initial state [t]E we have

R, [t]E |= φ ⇔ R/S, [t]E∪S |= φ

In practice, the reduced theory R/S can have a drastically smaller state space
than R, making model checking of R/S feasible when model checking of R is
unfeasible.

In cases where the R/S construction cannot be carried out for lack of a
suitable S satisfying the confluence condition in Theorem 1, we can nevertheless
achieve a similar state space reduction with a relation H that is a stuttering
simulation. For example the client-server reduction in Section 4.3 is achieved in
this manner. The general method is as follows: we assume that we have a set
of rules S ⊆ R which are P -invisible (S ⊆ InvP (R)), and T = R\S is coherent
with respect to S ∪ E0 modulo A, and S ∪ E0 is terminating but not confluent
modulo A. We then extend S to a set of rules Ŝ with S ⊆ Ŝ, Ŝ ⊆ R, and where
Ŝ is still P -invisible, and (R\Ŝ) is coherent with respect to Ŝ ∪ E0 modulo A,
and furthermore, E0 ∪ Ŝ is terminating and confluent modulo A. Consider now
the rewrite theory R̂ = (Σ, E0 ∪ A, R ∪ Ŝ). Since R̂ has more rules than R, if
R is deadlock-free3, that is, if any state [t]E can always be rewritten by R to a
new state [t′]E , then the following proposition is easy to prove:

Proposition 1. The identity homomorphism 1TΣ/E0∪A
: TΣ/E0∪A → TΣ/E0∪A

induces a P -simulation map from the underlying Kripke structure of R to that
of R̂.

We can now apply Theorem 1 to R̂ to obtain a stuttering P -bisimilar Ŝ-reduced
theory R̂/Ŝ. Since any simulation is a special case of a stuttering simulation,
and stuttering simulations are closed under composition [31, 24], by composing
the above simulation from R to R̂ with the stuttering bisimulation from R̂ to
R̂/Ŝ generated by Theorem 1, we obtain a stuttering simulation from R to R̂/Ŝ
and therefore we have

Theorem 2. Under the above assumptions for any φ ∈ ACTL∗
−X(P ) and any

initial state [t]E0∪A in R, we have R̂/Ŝ, [t]E0∪S∪A |= φ ⇒ R, [t]E0∪A |= φ.

Therefore, if we can model check the property φ using the reduced theory R̂/Ŝ,
we are then guaranteed that φ holds in R. See Section 4.3 for an example.
2 Note that the simulation relations are strict in the sense that aHb ⇒ L(a) = L(b)

and therefore negation does not have to be excluded.
3 Given a rewrite theory R, we can always transform it into a bisimilar deadlock-

free theory (see [29]). Therefore, there is no real loss of generality imposed by this
requirement.
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4 Case Studies

We present three case studies showing how the R/S and R̂/Ŝ constructions can
be achieved in practice for real applications, leading to massive reductions in
the state space. All the experiments have been performed with the Maude LTL
model checker running on an Intel machine with a 2.6GHz processor and 4GB
of memory running Linux.

4.1 Leader Election Protocol

We consider the simple case where the network is a ring consisting of n nodes,
numbered from 1 to n in the clockwise direction. We want to investigate the
LCR algorithm to select a leader. The informal description of this algorithm is
as follows [23]:

Each process sends its identifier around the ring. When a process receives
an incoming identifier, it compares that identifier to its own. If the in-
coming identifier is greater than its own, it keeps passing the identifier;
if it is less than its own, it discards the incoming identifier; if it is equal
to its own the process declares itself the leader.

We can specify a rewrite theory modeling this algorithm by means of objects
and messages, where the distributed state is a multiset of objects and messages
built by an associative and commutative multiset union operator “ ”:

s0 : 〈I〉 −→ [I] (I → I + 1 mod N)
s1 : [I] (J → I) −→ [I] if J < I
s2 : [I] (J → I) −→ [I](J → I + 1 mod N) if J > I
t : [I] (I → I) −→ Leader(I)

where N is the number of processes on the ring and 〈I〉 is the initial state of
process I. In the first phase (rewrite rule s0), each process I sends its identifier
to its neighbor and changes its format [I] so that this is done only once. As
soon as a process I receives its own identifier through the ring, the computation
is over; it removes all the object and the message and outputs Leader(I). The
messages are of the general form (I → J) where J is the identifier of the receiver
and I is the integer content of the message.

The set S = {s0, s1, s2} can be shown to be confluent and terminating modulo
associativity and commutativity. Let us assume that the property that we are
interested in is that eventually some process will be elected as leader. This is
expressed by means of a single atomic predicate, p, that is true in any state
containing Leader(I). The rules in S are p-invisible, and t is coherent with respect
to S modulo the associativity and commutativity axioms. Therefore, by Theorem
1, we can use the stuttering bisimilar reductionR/S to model check our property.
Note that reducing R with the rewrite rule s0 above (which can easily be shown
to be confluent and terminating) collapses an N -dimensional cube (generated by
rule s0) into a path of length N , meaning that the number of states in R/{s0} is
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reduced from 2N to N , and the number of paths reduces from 2N to 1. Table 1
shows the performance evaluation of model checking this problem before and
after reduction using the Maude LTL model checker.

4.2 Distributed Spanning Tree

A spanning tree of an undirected graph G = (V, E) is a tree (i.e., a connected
acyclic graph) that consists entirely of undirected edges and contains every vertex
of G. The distributed spanning tree problem tries to find a spanning tree for
a given set of network nodes V that are connected by E. The asynchronous
algorithm from [23] solves this as follows:

There is a distinct node r that is initially marked and acts as the root. A
marked node v asynchronously sends a message to each of its neighbors
once and for all. An unmarked node v nondeterministically chooses one
of the nodes who have sent it a message as its parent in the spanning
tree, becomes marked, and discards all the other messages.

One possible way of specifying the above algorithm is by the following rewrite
rules:

s1 : [ N | P, M NL] −→ [ N | P, NL](M ← N)
t1 : [N | none, NL](N ←M) −→ [ N | M, NL]
s2 : [N | M, NL](N ← K) −→ [ N | M, NL]
s3 : [N | root, NL](N ← K) −→ [ N | root, NL]

where the state is represented as a multiset (modulo associativity, commutativity,
and identity) of nodes and messages. Each node is of the form [N | P, L] where
N is its unique identifier, P is its parent node (initially none), and L is the list of
its neighbors (their identifiers to be exact). Variable M is of type integer which
denotes a known parent and consequently cannot be none or root. The node
with “root” as its parent is the root of the spanning tree. Let us assume that
the property of interest is “to eventually reach a state in which every node has
a parent”. This property can be expressed using a single atomic predicate, p,
that is false if there is a node with “none” as the parent. One can easily check
that the set of rules S = {s1, s2, s3} is p-invisible, confluent, terminating modulo
associativity, commutativity, and identity, and t1 is coherent with respect to S
modulo the same axioms. Since there are no equations (excluding the axioms)
in the theory, one can turn these rules into equations and gain a huge reduction
in the state space for model checking. Table 1 shows the performance evaluation
of model checking this problem before and after this R/S reduction using the
Maude LTL model checker.

4.3 A Distributed Client-Server System

Consider a system consisting of several clients and one server. The server has
a log (a list) for incoming requests. The clients send a message to the server
to request a service. When the server receives a request message, it sends the
relevant client a message containing the requested material, and adds an entry
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Table 1. Performance Results

Problem Number of Nodes Time Space Time (reduced) Space (reduced)
Leader Election 10 3.6s 27633 0 2

13 2.7m 506037 0 2
14 19.3m 1329885 0 2
15 – – 0 2

Spanning Tree 3 0.02s 417 0 9
4 10.2s 120183 0.01s 64
5 – – 0.17s 625
6 – – 0.5s 1296
7 – – 110.22s 117649
8 – – 99m 2097152

Client-Server 6 4.0s 125248 0.01 64
7 81.4s 1753600 0.01s 128
8 – – 0.01s 256
15 – – 1.8s 32768
20 – – 5.3m 1048576

to its log (B) to keep track of this communication. The following set of rewrite
rules model a simple version of this system:

s1 : [N | M ] −→ {N | M}(server← (N, M))
s2 : (server← (N, M))[server | B] −→ [ server | B (N, M)](N ← serv(M))
t1 : (N ← serv(M)){N | M} −→ {N}

where the state is a multiset (modulo associativity, commutativity, and identity
of multiset union operator “ ”) of a server, clients, and messages. The server
is indicated by identifier server. Clients each have an integer identifier N and
another integer index M indicating the service they require from the server.
Each client sends a message including its identifier and the index of the service
to the server. The server replies back and logs the communication in its local list
B. Assume that the property of interest is “a client that requires a service will
eventually receive it”. This property can be expressed by a set P of two atomic
predicates, of which one indicates the requirement of the service and the other
indicates the receipt. The set {s1, s2} is P -invisible and a very good candidate
for S, but because of the list nature of the buffer, these rules are not confluent.
For the property of interest, it does not matter in what order the messages are
buffered; but since the resulting buffer is different, confluence does not hold. If
one assumes a lexicographical ordering on the buffer (pairwise comparison of the
pairs (M, N)), then adding the following rule which always sorts the buffer

s3 : [server | B (N, M) (N ′, M ′) B′] −→ [ server | B (N ′, M ′) (N, M) B′] if
(N ′ > N) ∨ ((N = N ′) ∧ (M ′ > M))

and makes the set Ŝ = {s1, s2, s3} confluent and terminating. It is also invisible,
and t1 is coherent with respect to Ŝ modulo axioms. Therefore, one can reduce
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this theory to a theory of the form R̂/Ŝ. Table 1 shows the performance evalua-
tion of model checking this problem before and after reduction using the Maude
LTL model Checker.

5 Discharging Proof Obligations

Typically, formal verification efforts using state space reduction techniques
involve two separate tasks: (i) model checking the desired properties in the
reduced model; and (ii) discharging proof obligations ensuring that the proposed
reduction is indeed a correct reduction of the original system. We discuss here
the proof obligations that must be verified to ensure the correctness of an S-
reduction R/S, and ways in which the discharging of such obligations can be
assisted by formal tools. For R/S to be a correct reduction of R the following
proof obligations must be discharged:

1. the rules S must be proved P -invisible;
2. S ∪ E0 must be shown confluent and terminating modulo A; and
3. the rules in R\S must be proved locally strongly coherent with respect to

the equations S ∪ E0 modulo A.

Proving (1) is an inductive theorem proving task. Specifically, it amounts
to proving that each state predicate p ∈ P and also its negation ¬p are both
invariants for the rewrite theory (Σ, E0 ∪A, S). This can be reduced to proving
a series of first-order formulas that must be shown to hold inductively in the
equational specification (Σ, E0 ∪A); that is, to be satisfied in the initial model
TΣ/E0∪A. Proofs can be assisted by any first-order inductive theorem prover.
For Maude specifications Maude’s ITP [8] can be used. The proof obligations for
this task become considerably easier if the rules in S are topmost, that is, if all
rewriting happens at the top of a term. Many rewrite theories whose state is a set
or multiset of objects and messages, such as those in the case studies presented
in this paper, can be transformed into bisimilar topmost rewrite theories.

Proving (2) can be done mechanically using standard termination and con-
fluence checking tools that support reasoning modulo axioms A such as associa-
tivity and commutativity, and can in some cases handle conditional rules. Tools
of this kind include, for example, CiME [10] (for both tasks) AProVE [17] (for
termination), and for Maude specifications the Maude Termination Tool (MTT)
[13] and the Maude Church-Rosser Checker [8].

There is a discussion on proving (3) in [35]. For most combinations of as-
sociativity, commutativity and identity axioms in A this task can be checked
algorithmically when the rules are linear and unconditional. To the best of our
knowledge the only tool available is Maude’s Coherence Checker [12], which
currently can only reason modulo commutativity axioms.

We now discuss briefly the proof obligations for the R̂/Ŝ reductions. To begin
with, the same proof obligations (1)–(3) must be discharged, but now for R̂/Ŝ

instead of R/S. But that still leaves open the task of coming up with the rules Ŝ
in the first place. Two approaches are possible for this. On the one hand, as done
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in the case study of Section 4.3, one can use insight about the given specification
to find a suitable Ŝ. On the other, it is also possible to automatically search for
such a set Ŝ by performing Knuth-Bendix (KB) completion modulo A on the
equations E0∪S using any KB completion tool (modulo A) such as, for example,
CiME [10].

6 Related Work and Conclusions

Broadly speaking, our work is related to all other state space reduction and
abstraction techniques (see for example [20, 33, 22, 4, 9, 11, 19, 34, 32, 1, 21, 16]).
We discuss below several approaches that are most closely related to our own.

Several partial order reduction (POR) techniques achieve a reduction to a
representative subset of all states while preserving various types of bisimilarity.
Some of these techniques [19, 34, 32, 1, 21, 16] exploit the notion of invisibility, an
idea that is generalized here to arbitrary rewrite theories. A first main difference
with the POR approach is that POR techniques are typically dynamic (all except
[1, 21]), in the sense that the reduction is performed on-the-fly during the model
checking and requires substantial changes to the underlying model checking algo-
rithm (see [15, 18] for an exception to this); by contrast, our technique is a static
method, since we generate the reduced rewrite theory and then model check it.
Furthermore, it does not require any changes in the model checker. A second
important difference is in the different levels of generality: POR techniques typ-
ically assume a conventional concurrent language with processes and consider
invisible process transitions, whereas our approach is much more general: it does
not rely on these assumptions, and applies to arbitrary rewrite theories.

Our method has also some similarities with a reduction technique presented in
[2]. However, the settings are quite different, because [2] works in the framework
of process algebras, whereas our technique works for arbitrary rewrite theories.
Furthermore, the notion of invisibility used in [2] is not based on a certain
set of predicates. Instead, in our case the invisibility depends on what state
predicates are involved in the property that we want to model check. Also, the
notion of confluence used in [2] is completely different from ours: we use the
standard term-rewriting notion. The notion of coherence used in this work has
some similarities with notion of weak confluence in [36] if one views the rules
in S as τ -transitions. Moreover, their approach is dynamic, while ours is static.
The symbolic prioritization in [2] is relevant to our work in two senses: (1) it is
static, and (2) it is giving priority to some transitions over the rest, while we
also in some sense give priority to some rules over the rest.

Our reduction technique is also closely related to other notions of abstraction
and simulation used for reduction purposes in rewriting logic. In the case of
equational abstractions [29] one begins with a rewrite theory R = (Σ, E0 ∪
A, R) and adds extra equations G to it to obtain an abstract theory R/G =
(Σ, E0 ∪G ∪ A, R), so that we have a rewrite theory inclusion R ⊆ R/G. This
technique is generalized in [26] to much more general rewrite theory morphisms
H : R −→ R′ that need not be theory inclusions, give rise to simulations, and
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can be used for model checking purposes when R′ is more abstract than R.
Our proposed technique is different from those in [29] and [26]. In our case the
relationship between R and R/S cannot be understood as a theory morphism: it
is only a theory transformation. This means that we now have a new state space
reduction technique for rewrite theories that nicely complements those proposed
in [29, 26].

Our technique makes essential use of Viry’s notion of coherence [35] in rewrite
theories. But we use the notion in precisely the opposite way than in Viry’s work.
The original purpose of coherence is to make a rewrite theoryR = (Σ, E0∪A, R)
executable by turning the equations E0 into rules. Strong coherence then guaran-
tees that R and the resulting theory (Σ, A, E0 ∪R) are semantically equivalent.
We do somehow the opposite: beginning with a rewrite theoryR = (Σ, E0∪A, R)
we select a subset of rules S ⊆ R and turn those rules into equations to obtain
our reduced theoryR/S = (Σ, E0∪S∪A, R\S). We then check strong coherence
of R/S for executability and stuttering bisimilarity purposes.

We can summarize our contributions as follows: we have presented a general
method to reduce the state space of a concurrent system specified as a rewrite
theory R by selecting a set S of P -invisible transition rewrite rules that, when
turned into equations, yield a reduced theory R/S. We have shown that if R/S
satisfies reasonable executability assumptions it is stuttering bisimilar to R and
therefore satisfies the same CTL∗

−X formulas under this bisimilarity. Several
case studies presented show that R/S can have a drastically smaller state space
in practice, making it feasible to model check properties for R by using R/S
instead. We have also presented a method to obtain reductions of this kind using
extra invisible rules not present in the original theory R. The proof obligations
that must be discharged to guarantee the correctness of our proposed reductions
have also been discussed. Discharging them involves reasonable proof tasks that
for the most part can be supported by existing formal tools.

This work is part of a broader effort to develop state space reduction tech-
niques of wide applicability for concurrent systems specified as rewrite theories.
In this sense, it complements earlier efforts to develop reduction techniques of
this kind for rewrite theories [29, 26, 15]. It is however a new technique, dif-
ferent from earlier ones. In future work we plan to further develop the ideas
presented here in two opposite directions. In a more general direction, we plan
to investigate weaker conditions under which invisible transitions S can be used
to reduce the state space. In a more specific direction, we plan to apply these
techniques to distributed object systems, where we hope to exploit the more
specific nature of those systems to obtain even more drastic reductions. Two
other aspects that need to be further developed are: (i) building a stronger tool
environment for checking proof obligations, particularly for checking coherence
modulo more general axioms A; and (ii) developing a broader experimental base
of case studies.
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Abstract. This article demonstrates how a powerful and expressive
abstraction from concurrency theory—monads of resumptions—plays a
dual rôle as a programming tool for concurrent applications. The article
demonstrates how a wide variety of typical OS behaviors may be speci-
fied in terms of resumption monads known heretofore exclusively in the
literature of programming language semantics. We illustrate the expres-
siveness of the resumption monad with the construction of an exemplary
multitasking kernel in the pure functional language Haskell.

1 Introduction

Many techniques and structures have emigrated from programming language
theory to programming practice (e.g., types, CPS, etc.), and this paper advo-
cates that resumption monads make this journey as well. This work demonstrates
how a natural (but, perhaps, under-appreciated) computational model of con-
currency is used to construct multi-threaded concurrent applications suitable
for formal verification. The expressiveness of resumption monads is illustrated
by the construction of an exemplary multitasking operating system kernel with
process forking, preemption, message passing, and synchronization constructs all
requiring about fifty lines of Haskell 98 code1. And, because this machinery may
be generalized as monad transformers, the functionality described here may be
reused and refined easily.

The literature involving resumption monads [2, 3, 4, 5, 6, 7] focuses on their
use in elegant and abstract mathematical semantics for programming languages.
The current work advocates resumption monads as a useful abstraction for con-
current functional programming as well. The contributions of this work are
twofold: (1) the formulation of typical concurrent operating system behaviors
in terms of structures known heretofore in theoretical semantics literature and
(2) a substantial case study illustrating this formulation within a higher-order
functional programming language. The purpose of the case study, in part, is to
provide an exposition so that the interested reader may grasp the theoretical
literature more readily.
� This research supported in part by subcontract GPACS0016, System Information
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1 All the code presented in this paper is available online [1].
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A resumption [8] is stream-like construction similar to a continuation in that
both tell what the “rest of the computation” is. However, resumptions are con-
siderably less powerful than continuations—the only thing one may model with
resumptions is multitasking computation. This conceptual economy makes con-
current applications structured with resumption monads easy to comprehend,
modify, extend, and reason about. Specifically, we demonstrate how to construct
a multitasking operating system kernel based on three monads and their opera-
tions (written here in categorical style):

St A = Sto → A×Sto — state
R A = μX . (A + (St X )) — state+concurrency
Re A = μX . (A + (Req×(Rsp→St X ))) — state+concurrency+interactive i/o

St is the familiar state monad, while R and Re are resumption monads providing
what we call basic and reactive concurrency about which we will say much more
below.

The structure of this article is as follows. After reviewing the related work be-
low and the necessary background in Section 2, Section 3 describes in detail how
resumption monads may be used to model multitasking concurrency. Section 4
presents a resumption-monadic semantics for a concurrent language extended
with “signals”; a thread may signal the kernel to fork, suspend, preempt, print,
send or receive a message, and acquire or release a semaphore and Section 5
describes the kernel on which these threads execute. Section 6 summarizes the
work and outlines future directions.

Related Work. Functional languages are well-known for promoting mathe-
matical reasoning about programs, and, perhaps because of this, there has been
considerable research into their use for concurrent software such as OS kernels.
The present work has this pedigree, yet fundamentally differs from it in at least
one key respect: we explicitly encapsulate all effects necessary to the kernel with
monads: input/output, shared state and preemptive multitasking concurrency.

The concurrency models underlying previous applications of functional lan-
guages to concurrent system software fall broadly into four camps. The first
camp [9, 10, 11, 12] assumes the existence of a non-deterministic choice opera-
tor to accommodate “non-functional” situations where more than one action
is possible, such as a scheduler choosing between two or more waiting threads.
However, such a non-deterministic operator risks the loss of an important rea-
soning principle of pure languages—referential transparency—and considerable
effort is made to minimize this danger. Non-determinism may be incorporated
easily into the kernel presented here via the non-determinism monad, although
such non-determinism is of a different, but closely related, form.

The second model uses “demand-driven concurrency” [13, 14] in which threads
are mutually recursive bindings whose lazy evaluation simulates multitasking
concurrency. Interleaving order is determined (in part) by the interdependency
of these bindings. However, the demand-driven approach requires some alter-
ation of the underlying language implementation to completely determine thread
scheduling. Thread structure is entirely implicit—there are no atomic actions per
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se. Demand determines the extent to which a thread is evaluated—rather like
the “threads” encoded by computations in the lazy state monad [15]. Thread
structure in the resumption-monadic setting is explicit—one may even view a
resumption monad as an abstract data type for threads. This exposed thread
structure allows deterministic scheduling without changing the underlying lan-
guage implementation as with demand-driven concurrency.

The third camp uses CPS to implement thread interleaving. Concurrent be-
havior may be modeled with first-class continuations [16, 17, 18, 19] because the
explicit control over evaluation order in CPS allows multiple threads to be “inter-
woven” to produce any possible execution order. Claessen presents a formulation
of this style using the CPS monad transformer [16], although without exploiting
the full power of first-class continuations—i.e., he does not use callcc or shift
and reset . While it is certainly possible to implement the full panoply of OS
behaviors with CPS, it is also possible to implement much, much more—most
known effects may be expressed via CPS [20]. This expressiveness can make
programs in CPS difficult to reason about, rendering CPS less attractive as a
foundation for software verification. Resumptions can be viewed as a disciplined
use of continuations which allows for simpler reasoning.

The last camp uses a multi-threading paradigm called trampoline-style pro-
gramming [21]. Programs in trampoline-style are organized around a single
scheduling loop called a “trampoline.” One attractive feature of trampolining is
that it requires no appeal to first-class continuations. Of the four camps, tram-
polining is most closely related to the resumption-monadic approach described
here. In [21], the authors motivate trampolining with a type constructor equiva-
lent to the functor part of the basic resumption monad (described in Section 3.1
below), although the constructor is never identified as such.

The previous research relevant to this article involves those applications of
functional languages where the concurrency model is explicitly constructed
rather than inherited from a language implementation or run-time platform.
There are many applications of functional languages to system software that
rely on concurrency primitives from existing libraries or languages [22, 23]; as
the modeling of concurrency is not their primary concern, no further comparison
is made. Similarly, there are many concurrent functional languages—concurrent
versions of ML, Haskell, and Erlang—but their concurrency models are built-in
to their run-time systems and provide no basis of comparison to the current work.
It may be the case, however, that the resumption-monadic framework developed
here provides a semantic basis for these languages.

Resumptions are a denotational model of concurrency first introduced by
Plotkin [8]; excellent introductions to this non-monadic form of resumptions
are due to Schmidt [24] and Bakker [25]. Moggi was the first to observe that the
categorical structure known as a monad supports modular semantic theories for
programming languages and he showed how a sequential theory of concurrency
could be expressed in the resumption monad [2]. The formulation of the basic
resumption monad we use is due to Papaspyrou [3, 5], although other equivalent
formulations exist [2, 26, 27].
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2 Review: Monads

Monads are algebras just as groups or rings are algebras; that is, a monad is a
type constructor (functor) with associated operators obeying certain equations—
the well-known “monad laws” [28]. There are several formulations of monads, and
we use one familiar to functional programmers called the Kleisli formulation: a
monad M is given by an eponymous type constructor M and the unit operator,
return : a →M a, and the bind operator, (>>=) : M a → (a →M b)→ M b.
We assume of necessity that the reader possesses familiarity with monads and
their uses in modeling effects. Readers requiring further background should con-
sult the references [2, 28]. We represent the monadic constructions here in the
pure functional language Haskell 98 [29], although we would be equally justified
using categorical notation or any other higher-order functional programming
language.

A monad in Haskell typically consists of a data type declaration (defining the
computational “raw materials” encapsulated by the monad) and definitions for
the overloaded symbols (return) and (>>=) [29]. The state monad St , containing
a single threaded state Sto = Loc→Int , is declared:

data St a = ST (Sto → (a,Sto))
deST (ST x ) = x

return v = ST (λs . (v , s))
(ST x) >>= f = ST(λs. let (y, s′) = (x s)

in deST (f y) s′)

The state monad has operators for updating the state, u, getting the state,
g, and reading a particular location, getloc:

u : (Sto→Sto)→St ()
g : St Sto
getloc : Loc → St Int

u δ = ST (λ s . ((), δ s))
g = ST (λs . (s , s))
getloc x = g >>= λ σ. return (σ x )

Here, () is both the single element unit type and its single element. The “null”
bind operator, (>>) : M a → M b → M b, is useful when the result of >>=’s first
argument is ignored: x>> y = x >>= λ . y .

Notational Convention. We suppress details of Haskell’s concrete syntax
when they are unnecessary to the presentation (in particular, instance declara-
tions and class predicates in types). Haskell 98 reverses the standard use of (::)
and (:) in that (::) stands for “has type” and (:) for list concatenation in Haskell
98. We will continue to use the standard interpretation of these symbols.

3 Concurrency Based on Resumptions

Two formulations of resumption monads are used here–what we call basic and
reactive resumption monads. Both occur, in one form or another, in the literature
[2, 3, 5, 26, 27]. The basic resumption monad (Section 3.1) encapsulates a notion
of multitasking concurrency; that is, its computations are stream-like and may
be woven together into single computations representing any arbitrary schedule.
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The reactive resumption monad (Section 3.2) encapsulates multitasking concur-
rency as well, but, in addition, affords a request-and-response interactive no-
tion of computation which, at a high-level, resembles the interactions of threads
within a multitasking operating system.

To motivate resumptions, let’s compare them with a natural model of con-
currency known as the “trace model” [30]. The trace model views threads as
(potentially infinite) streams of atomic operations and the meaning of concur-
rent thread execution as the set of all their possible thread interleavings. Imagine
that we have two simple threads a = [a0, a1] and b = [b0], where a0, a1, and b0
are “atomic” operations, and, if it is helpful, think of such atoms as single ma-
chine instructions. According to the trace model, the concurrent execution a‖b
of threads a and b is denoted by the set2 of all their possible interleavings:

traces (a ‖ b) = {[a0, a1, b0], [a0, b0, a1], [b0, a0, a1]} (‡)
This means that there are three distinct possible execution traces of (a ‖ b), each
of which corresponds to an interleaving of the atoms in a and b. Non-determinism
in the trace model is reflected in the fact that traces(a ‖ b) is a set consisting of
multiple interleavings.

The trace model captures the structure of concurrent thread execution ab-
stractly and is well-suited to formal characterizations of properties of concurrent
systems (e.g., liveness). However, a gap exists between this formal model and an
executable system: traces are streams of events, and each event is itself a place
holder (i.e., what do the events a0, a1, and b0 actually do?). Resumption monads
bridge this gap because they are both a formal, trace-based concurrency model
and may be directly realized and executed in a higher-order functional language.

The notion of computation provided by resumption monads is that of se-
quenced computation. A resumption computation has a stream-like structure in
that it includes both a “head” (corresponding to the next action to perform)
and a “tail” (corresponding to the rest of the computation)—very much like the
execution traces in (‡). We now describe the two forms of resumption monads
in detail.

3.1 Sequenced Computation and Basic Resumptions

This section introduces sequenced computation in monadic style, discussing the
monad that combines resumptions with state. The monad combining resump-
tions with state is:

data R a = Done a | Pause (St (R a))
return = Done
(Done v) >>= f = f v
(Pause r) >>= f = Pause (r >>=St λκ. returnSt (κ >>= f))

(∗)

2 This set is also prefix-closed in Roscoe’s model, meaning that it includes all prefixes of
any trace in the set. For the purposes of this exposition, we ignore this consideration.
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Here, the bind operator for R is defined recursively using the bind and unit
for the state monad (written above as >>=St and returnSt, respectively). Some
stateful computation—i.e., within “r >>=St . . .”—takes place.

Returning to the trace model example from the beginning of this section, we
can now see that R-computations are quite similar to the traces in (‡). The
basic resumption monad has lazy constructors Pause and Done that play the
rôle of the lazy list constructors cons (::) and nil ([ ]) in the traces example. If the
atomic operations of a and b are computations of type St (), then the following
computations of type R () are the set of possible interleavings:

Pause (a0 >> return (Pause (a1 >> return (Pause (b0 >> return (Done ()))))))
Pause (a0 >> return (Pause (b0 >> return (Pause (a1 >> return (Done ()))))))
Pause (b0 >> return (Pause (a0 >> return (Pause (a1 >> return (Done ()))))))

where >> and return are the bind and unit operations of the St monad. While
the stream version implicitly uses a lazy cons operation (h :: t), the monadic
version uses something similar: Pause (h >> return t). The laziness of Pause
allows infinite computations to be constructed in R just as the laziness of cons
in (h :: t) allows infinite streams to be constructed.

3.2 Reactive Concurrency

We now consider a refinement to the R monad allowing computations to sig-
nal requests and receive responses in a manner like the interaction between an
operating system and processes. Processes executing in an operating system are
interactive; processes are, in a sense, in a continual dialog with the operating sys-
tem. Consider what happens when such a process makes a system call. (1.) The
process sends a request signal q to the operating system for a particular action
(e.g., a process fork). Making this request may involve blocking the process (e.g.,
making a request to an I/O device would typically fall into this category) or it
may not (e.g., forking). (2.) The OS, in response to the request q, handles it by
performing some action(s). These actions may be privileged (e.g., manipulating
the process wait list), and a response code c will be generated to indicate the
status of the system call (e.g., its success or failure). (3.) Using the information
contained in c, the process continues execution.

How might we represent this dialog? Assume we have data types of requests
and responses:

data Req = Cont | 〈other requests〉
data Rsp = Ack | 〈other responses〉

Both Req and Rsp are required to have certain minimal structure; the continue
request, Cont , signifies merely that the computation wishes to continue, while
the acknowledge response, Ack , is an information-free response. The following
monad, Re, “adds” the raw material for interactivity to the monad R as follows:

data Re a = D a | P (Req, Rsp → (St(Re a)))
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We coin the term reactive resumption to distinguish Re from R and use D
and P instead of “Done” and “Pause”, respectively. The notion of concurrency
provided by Re formalizes the process dialog example described above. A paused
Re-computation has the form P(q, r), where q is a request signal in Req and r ,
if provided with a response code from Rsp, is the rest of the computation. The
operations for Re are defined:

return = D
D v >>= f = f v
P (q, r) >>= f = P (q, λ rsp . (r rsp) >>=St λ κ . returnSt (κ >>= f ))

In this article, we use a particular definition of the request and response data
types Req and Rsp which correspond to the services provided by the operating
system (more will be said about the use of these in Section 5):

type Message = Int
type PID = Int
data Req = Cont | Sleepq | Forkq Process | Bcstq Message

|Rcvq | Vq | Pq | Prntq String
| PIDq |Killq PID

data Rsp = Ack |Rcvr Message | PIDr PID

Note that both Req and Rsp have Cont and Ack . The kernel in Section 5 will
use the response Ack for several different requests. Process is defined in the next
section.

Reactive resumption monads have two non-proper morphisms. The first, step,
recasts a stateful computation as a resumption computation3:

step : St a → Re a
step x = P (Cont , λAck . x >>=St (returnSt ◦ D))

The definition of step shows why we require that Req and Rsp have a par-
ticular shape including Cont and Ack , respectively; namely, there must be at
least one request/response pair for the definition of step. Another non-proper
morphism for Re allows a computation to raise a signal; its definition is:

sig : Req → Re Rsp
sig q = P(q, returnSt ◦ returnRe)

sigi : Req → Re ()
sigi q = P (q, λ . returnSt (returnRe ()))

Furthermore, there are certain cases where the response to a signal is intention-
ally ignored, for which we use sigi .

4 The Language of Threads

This section formulates an abstract syntax for kernel processes. Operating sys-
tems texts typically define threads as lightweight processes executed in the same
3 For R, step is defined similarly: step x = Pause(x>>=St (returnSt ◦ Done)).
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address space4. Events are abstract machine instructions—they read from and
write to locations and signal requests to the operating system. Processes are
infinite sequences of events, although it is straightforward to include finite (i.e.,
terminating) processes as well, but it suffices for our presentation to assume
non-terminating, infinite processes.

Process = Event ; Process
Event = Loc:=Exp | bcast(Exp) | recv(Loc) | print(String,Exp)

| sleep | fork(Process) | P | V | kill(Exp)
Exp = Int | Loc | pid

The Exp language is self-explanatory except for the pid expression that re-
turns the process identifier of the calling process. The Event language has a
simple assignment statement, l:=e, which evaluates its right-hand side, e∈Exp,
and stores it in the location, l∈Loc, on the left-hand side. The language includes
broadcast and receive primitives: bcast(e) and recv(l). The event bcast(e)
broadcasts the value of expression e, while recv(l) receives an available message
in location l . There is also a process spawning primitive, fork(p), producing a
child process p executing in the same address space. The language has a single
semaphore with test release operations, P and V. Finally, there is a process killing
primitive, kill(pid), that terminates the process with identifier pid (if such a
process exists). Where the language and its semantics differ from previous work
[5] is the inclusion of signals; that is, programs may request intervention from
the kernel.

Figure 1 defines expressions, events, and processes with E [[−]], A[[−]], and
P [[−]], respectively. In most respects, this is a conventional store passing se-
mantics in monadic form, the difference being that individual St actions (e.g.,
getloc x) are lifted to Re via the step function. step creates an “atomic” action
out of a single St action, and A[[−]] “chains together” one or two such actions.
For example, A[[P]] is the single kernel signal (sigiPq), while A[[x:=e]] chains to-
gether “E [[e]]” and “store x” with >>=. The meaning of a process, P [[p]], is the
infinite “chaining-together” of its event chains. These semantics are similar to
published resumption-monadic language semantics [5] for CSP-like languages,
differing only in the inclusion of signals (i.e., requests made with with sig and
sigi to be handled by the kernel).

5 The Kernel

This section describes the structure and implementation of a kernel providing a
variety of services typical to an operating system. For the sake of comprehensi-
bility, we have intentionally made this kernel simple; the goal of the present work
is to demonstrate how typical operating system services may be represented us-
ing resumption monads in a straightforward and compelling manner. It should
be clear, however, how more powerful or expressive operating system behaviors
may be captured as refinements to this system.
4 We use the terms “thread” and “process” interchangeably throughout.
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[l �→v] : (Loc→Int)→Loc→Int

[l �→i ] σ n =

{
i l = n
σ n l �= n

store : Loc→Int→Re a
store l i = (step◦u) ([l �→i ])

E [[−]] : Exp → Re Int
E [[i ]] = return i
E [[x ]] = step (getloc x )
E [[pid]] = sig PIDq >>= (return ◦ prj )

where prj (PIDr pid) = pid
P[[−]] : Process → Re ()
P[[e; p]] = A[[e]] >> P[[p]]

A[[−]] : Event → Re ()
A[[x:=e]] = E [[e]] >>= store x
A[[print(m,e)]] = E [[e]] >>= print

where
out m v = m++“ : ”++show v
print = sigi ◦Prntq ◦ (out m)

A[[sleep]] = sigi Sleepq

A[[fork(p)]] = sigi (Forkq p)
A[[bcast(x)]] = E [[x ]] >>= (sigi ◦ Bcstq)
A[[recv(x)]] = sig Rcvq >>= (store x) ◦ prj

where prj (Rcvr m) = m
A[[P]] = sigi Pq

A[[V]] = sigi Vq

A[[kill(e)]] = E [[e]] >>= (sigi ◦ Killq)

Fig. 1. Semantics of Expressions, Events, and Processes. All monad operations belong
to the Re monad.

The structure of the kernel is given by the global system configuration and two
mutually recursive functions representing the scheduler and service handler. The
system configuration consists of a snapshot of the operating system resources;
these resources are a thread waiting list, a message buffer, a single semaphore,
an output channel, and a counter for generating new process identifiers. The
system configuration is specified by:

type System = ([(PID ,Re ())], — waiting list
[Message], — message buffer
Semaphore, — Semaphore=Int, 1 initially
String, — output channel
PID) — identifier counter

The first component is the waiting list consisting of a list of pairs: (pid , t). Here,
pid is the unique process identifier of thread t . The second component is a mes-
sage buffer where messages are assumed to be single integers and the buffer itself
is a list of messages. Threads may broadcast messages, resulting in an addition to
this buffer, or receive messages from this buffer if a message is available. There is
a single semaphore, and individual threads may acquire or release this lock. The
semaphore implementation here uses busy waiting, although one could readily
refine this system configuration to include a list of processes blocked waiting on
the semaphore. The fourth component is an output channel (merely a String)
and the fifth is a counter for generating process identifiers.

The types of a scheduler and service handler are:

sched : System → R ()
handler : System → (PID ,Re ()) → R ()
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A sched morphism takes the system configuration (which includes the waiting
list), picks the next thread to be run, and calls the handler on that thread.
The sched and handler morphisms translate reactive computations—i.e., those
interacting threads typed in the Re monad present in the wait list—into a single,
interwoven scheduling typed in the basic R monad. The range in the typings of
sched and handler is R () precisely because the requested thread interactions
have been mediated by handler .

From the waiting list component of the system configuration, the scheduler
chooses the next thread to be serviced and passes it, along with the system con-
figuration, to the service handler. The service handler performs the requested
action and throws the remainder of the thread and the system configuration
(possibly updated reflecting the just-serviced request) back to sched. The sched-
uler/handler interaction converts reactive Re computations representing threads
into a single basic R computation representing a particular schedule.

There are many possible choices for scheduling algorithms—and, hence, many
possible instances of sched—but for our purposes, round robin suffices:

rrobin : System → R ()
rrobin ([], , , , ) = Done () — stop when no threads
rrobin (((i , t) :: w),mq, s , o, g) = handler (w ,mq, s , o, g) (i , t)

The handler fits entirely in Figure 2. A call (handler sys (i ,P(q, r))) responds
to query q based on the contents of sys and follows the same pattern:

P (q, r) → Pause(〈St action〉 ; returnSt (rrobin sys′))

Here, the “〈St action〉” is a (possibly empty) St computation determined by
r and sys ′ is the System configuration reflecting changes to kernel resources
necessary to handling q . Each handler branch is discussed in detail below and
the labels (a.)-(l.) refer to lines within Figure 2.

Basic Operation. When handler encounters a thread which is completed (i.e.,
the thread is a computation of the form D ), it simply calls the scheduler with
the unchanged system configuration (a.). If the thread wishes to continue (i.e.,
it is of the form P(Cont , r)), then handler acknowledges the request by passing
Ack to r (b.). As a result, the first atom in r is scheduled, and the rest of the
thread (written next (i , κ) above) is passed to the scheduler.

Dynamic Scheduling. A thread may request suspension with the Sleepq signal
(c.); the handler changes the Sleepq request to a Cont and reschedules the thread.
The effect of this is to delay the thread by one scheduling cycle. An obvious
refinement of this service would include a counter field within the Sleepq request
and use this field to delay the thread through multiple cycles.

A thread may request to spawn a new thread (d.). The child process is
(g,P [[p]]) for new identifier g . Then, both parent and child thread are added
back to the waiting list. We introduce the “continue” helper function, cont , that
takes a partial thread, r , and a response code, rsp, and creates a thread which re-
ceives and continues on the response code rsp. Another useful service (á la Unix



168 W.L. Harrison

(a.)
(b.)

(c.)

(d.)

(e.)

(f.)

(g.)

(h.)

(i.)

(j.)

(k.)

(l.)

handler : System → (PID ,Re ()) → R ()
handler (w ,mq , s, o, g) (i , t) =
case t of

(D v) → rrobin (w ,mq , s, o, g)
(P(Cont , r)) → Pause (r Ack >>=St λκ. returnSt (next (i , κ))

where
next t = rrobin (w++[t ],mq , s, o, g)

(P(Sleepq , r)) → Pause (returnSt next)
where

next = rrobin (w++[(i ,P(Cont , r))],mq , s, o, g)
(P(Forkq p, r)) → Pause (returnSt next)

where
parent = (i , cont r Ack)
child = (g , P[[p]])
next = rrobin (w++[parent , child ],mq , s, o, g + 1)

(P(Bcstq m, r)) → Pause (returnSt next)
where

next = rrobin (w++[(i , cont r Ack)],mq++[m], s, o, g)

(P(Rcvq , r)) | (mq == []) → Pause (returnSt next)
where

next = rrobin (w++[(i ,P(Rcvq , r))], [], s, o, g)
(P(Rcvq , r)) | otherwise → Pause (returnSt next)

where
next = rrobin (w++[(i , cont r (Rcvr m))],ms, s, o, g)
m = head mq
ms = tail mq

(P(Prntq msg , r)) → Pause (returnSt next)
where

next = rrobin (w++[(i ,P(Cont , r))],mq , s, o++msg , g)
(P(Pq , r)) → Pause (returnSt next)

where
next = if s > 0 then goahead else tryagain
goahead = rrobin (w++[(i ,P(Cont , r))],mq , s − 1, o, g)
tryagain = rrobin (w++[(i ,P(Pq , r))],mq , s, o, g)

(P(Vq , r)) → Pause (returnSt next)
where

next = rrobin (w++[(i , cont r Ack)],mq , s + 1, o, g)
(P(PIDq , r)) → Pause (returnSt next)

where
next = rrobin (w++[(i , cont r (PIDr i))],mq , s, o, g)

(P(Killq j , r)) → Pause (returnSt next)
where

next = rrobin (wl ′,mq , s, o, g)
wl ′ = filter (exit j ) (w++[(i , cont r Ack)])
exit i (pid , t) = pid /= i

cont : (Rsp → St (Re a)) → (Rsp → Re a)
cont r rsp = P (Cont , λAck . r rsp)

Fig. 2. The Request Handler
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fork system call) would include a response Forkr Bool in Rsp to distinguish
child and parent processes.

Asynchronous Message Passing. For a thread to broadcast m (e.), the mes-
sage is simply appended to the message queue. When a Rcvq signal occurs and
the message queue is empty, then the thread must wait (f.) and so is put back on
the thread list. Note that, rather than busy-waiting for a message, the message
queue could contain a “blocked waiting list” for threads waiting for the arrival
of messages, and, in that scenario, the handler could wake a blocked process
whenever a message arrives. If there is a message m in the message queue, then
it is passed to the thread (g.).

Printing. When a print request (Prntq msg) is signaled (h.), then the string msg
is appended to the output channel out and the rest of the thread, P(Cont , r),
is passed to the scheduler. An alternative could use the “interactive output”
monad formulation for R: R A = μX . (A + (String×S X )) instead of encoding
the output channel as the string o.

Synchronization Primitives. Requesting the system semaphore (i.) will suc-
ceed if s > 0, in which case the requesting thread will continue with the sema-
phore decremented; if > 0, the requesting thread will suspend. These possible
outcomes are bound to goahead and tryagain in the following handler clause,
and handler chooses between them based on the current value of s: Note that
this implementation uses busy waiting merely for simplicity’s sake. One could
easily implement more efficient strategies by including a queue of waiting threads
with the semaphore. A thread may release the semaphore (j.) without blocking.
Note this semaphore is general rather than binary, meaning that the counter s
may have as its value any non-negative integer rather than just 0 or 1.

Process Id Request. A thread may request its identifier i (k.), which is simply
passed to it in cont r (PIDr i).

Preemption. One thread may preempt another by sending it a kill signal rem-
iniscent of the Unix (kill -9) command; this is implemented by the handler
declaration at line (l.). Upon receiving the signal Killq j , the thread with process
identifier j (if one exists) is removed from the waiting list using the Haskell built-
in function filter : (a→Bool)→[a]→[a]. In a call (filter b l), filter returns those
elements of list l on which b is true (in order of their occurrence in l).

Time Behavior of >>=R and >>=Re. Because the bind operations for R and
Re are both O(n) in the size of their first arguments, one can write programs
that, through the careless use of the bind, end up with quadratic (or worse)
time complexity. Note, however, the kernel avoids this entirely by relying on
co-recursion in the definition of handler .

Executing the kernel. An R computation may be projected to St with:

run : R a → St a
run (Done v) = returnSt v
run (Pause ϕ) = ϕ >>=St run
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Running the kernel on initial processes p1, . . . , pn is accomplished with

run (rrobin ([P [[p1]], . . . ,P [[pn]]], [], 1, "", 0))

Sample executions are provided in the code base [1].

6 Conclusions

As of this writing, resumptions as a model of concurrency have been known for
thirty years and, in monadic form, for almost twenty. Yet, unlike other tech-
niques and structures from language theory (e.g., continuations, type systems,
etc.), resumptions have evidently never found wide-spread acceptance in pro-
gramming practice. This is a shame, because resumptions—especially in monadic
form—are a natural and beautiful organizing principle for concurrent applica-
tions: they capture exactly what one needs to write and think about multi-
tasking programs—and no more! Resumptions capture precisely the intuition
that threads are potentially infinite sequences of atoms interacting according
to some discipline. The framework presented here has been applied in a num-
ber of diverse settings and expresses a broad sampling of concurrent behaviors.
This is solid evidence that resumptions express the true essence and structure
of multitasking computation.

Although the kernel is, of necessity, simple, it does demonstrate both the
wide scope of concurrent behaviors expressible with resumption monads and
the ease with which such behaviors may be expressed. To be sure, more efficient
implementations and realistic features may be devised (e.g., by eliminating busy-
waiting). As each of the three monads may be generalized as monad transformers,
instances of this kernel inherit the software engineering benefits of monad trans-
formers that one would expect—namely, modularity, extensibility, and reusabil-
ity. Such kernel instances may be extended by either application of additional
monad transformers or through refinements to the resumption monad transform-
ers themselves. Such refinements are typically straightforward; to add a new ser-
vice to the kernel of Section 5, for example, one merely extends the Req and Rsp
types with a new request and response and adds a corresponding handler defini-
tion. The kernel in Section 5 may, in fact, be viewed as the result of multiple ex-
tensions to a core “basic operation” kernel (i.e., one having only a Cont request).

The framework developed here has been applied to such seemingly diverse
purposes as language-based security [31] and systems biology [32]; each of these
applications is an instance of this framework. The difference is evident in the
request and response data types Req and Rsp. Recent work in systems biology
applies process calculae as a descriptive mechanism for biological processes and
structures [33]. As an alternative foundation, the resumption-monadic frame-
work discussed here has been applied to the formal modeling of the life cycles of
autonomous, intercommunicating cellular systems [32]. Each cell has some collec-
tion of possible actions describing its behavior with respect to itself and its envi-
ronment. The actions of the photosynthetic bacterium Rhodobacter Sphaeroides
are reflected in the request and response types:
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data Req = Cont |Divide | Die | Sleep |Grow |LightConcentration
data Rsp = Ack | LightConcRsp Float

Each cell may undergo physiological change (e.g., cell division) or react to its
immediate environment (e.g., to the concentration of light in its immediate vicin-
ity). The kernel instance here also maintains the physical integrity of the model.

The kernel presented here confronts many “impurities” considered difficult to
accommodate within a pure, functional setting—concurrency, state, and i/o—
which are all members of the so-called “Awkward Squad” [34]. In Haskell, these
real world impurities are swept, in the memorably colorful words of Simon Pey-
ton Jones, into a “giant sin-bin” called the IO monad5. But is IO truly a monad
(i.e., does it obey the monad laws)? All of these impurities have been handled in-
dividually via various monadic constructions (consider the manifestly incomplete
list [2, 35]) and the current approach combines some of these constructions into
a single monad. While it is not the intention of the current work to model the
awkward squad as it occurs in Haskell, the techniques and structures presented
here point the way towards such models.
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Armin Kühnemann and Andreas Maletti�

Institute for Theoretical Computer Science, Department of Computer Science
Dresden University of Technology,

D–01062 Dresden, Germany
{kuehne, maletti}@tcs.inf.tu-dresden.de

Abstract. Accumulation techniques were invented to transform func-
tional programs, which intensively use append functions (like inefficient
list reversal), into more efficient programs, which use accumulating pa-
rameters instead (like efficient list reversal). In this paper we present
a generalized and automatic accumulation technique that also handles
programs operating with unary functions on arbitrary tree structures
and employing substitution functions on trees which may replace differ-
ent designated symbols by different trees. We show that this transfor-
mation does not deteriorate the efficiency with respect to call-by-need
reduction.

1 Introduction

The sequence of trees in Figure 1 illustrates the stepwise growth of a tree, where
in every step in parallel every occurrence of a symbol A (and B, respectively) is
substituted by a tree (D A) (and (T A B A), respectively).
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Fig. 1. Stepwise growth of a tree

In a functional program pnon (formulated e.g. in Haskell), this substitution can
be defined by a ternary function g that takes the “previous tree” and the two
kinds of “fresh branches” (D A) and (T A B A) as arguments. Additionally,
a unary function f generates as many nested calls of g as the argument of f
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indicates, where natural numbers are represented by a nullary Z and a unary S,
i.e. the initial expression (f (Sn Z)) generates n nested calls of g.1

f Z = B
f (S x1) = g (f x1) (D A) (T A B A)
g A y1 y2 = y1
g B y1 y2 = y2
g (D x1) y1 y2 = D (g x1 y1 y2)
g (T x1 x2 x3) y1 y2 = T (g x1 y1 y2) (g x2 y1 y2) (g x3 y1 y2)

Unfortunately, pnon has cubic time-complexity in the input number n, since g has
to process n intermediate results with sizes 12, 22, . . . , n2, respectively (though
they are not explicitly constructed in a call-by-need evaluation).

Therefore we would prefer the following program pacc which has linear time-
complexity in n to evaluate the (modified) initial expression (f (Sn Z) A B):

f Z y1 y2 = y2
f (S x1) y1 y2 = f x1 (D y1) (T y1 y2 y1)

Since pacc uses its second and third argument to accumulate step by step a
“D-branch” and an output tree, respectively, we call pacc an accumulative pro-
gram, whereas we call pnon non-accumulative. Techniques which transform non-
accumulative into accumulative programs are called accumulation.

In the case that substitutions on tree structures are restricted to append
functions on list structures, there is a long history of research on accumulation:
Already in [6] it is shown in the context of transforming programs into iterative
(tail-recursive) form, how non-accumulative programs can be transformed (non-
automatically) into their accumulative versions. In [3, 18] a similar technique
for linear recursive functions is presented. Other non-automatic realizations of
accumulation are given e.g. in [4, 14]. Finally, the transformation of [25] is fully
automatic and is accompanied by an efficiency analysis. The crucial laws, on
which the transformation of [25] is based, can be found in our paper in a similar
form. All mentioned techniques essentially rely on the properties of the monoid
of lists with append. This fact is detailed in [5].

Our automatic transformation technique is more general in two aspects: we
consider (i) arbitrary tree structures (instead of lists) as input and output, and
(ii) substitutions on trees (instead of append) which additionally may replace
different designated symbols by different trees. On the other hand, our technique
is restricted to unary functions (apart from substitutions), though also in [25] the
only example program involving a non-unary function could not be optimized.
Hence the scope of our technique includes the unary functions in the examples
1 Since there is only one unary input symbol S for f , the actual parameters (D A) and

(T A B A) of g are unique. Hence, an alternative version of g could avoid its formal
parameters y1 and y2 and directly use (D A) and (T A B A) in its A- and B-rules,
respectively. In a more elaborate example with different unary input symbols for f
the actual parameters of g may be different and hence the formal parameters are
essential. For convenience we avoided to blow up our example into this direction.
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of [25] (in particular, inefficient list reversal). Moreover, restricting recursive calls
of the unary functions to be primitive-recursive will guarantee that in contrast
to [25] no substitutions appear in transformed programs anymore. Our efficiency
result is based on exactly this fact.

For this purpose, we view functional programs like pnon as special 2-modular
tree transducers [10]. Every function in module 1 (like f in pnon) is unary and
is defined by a case analysis on the root symbol c of its argument t. The right-
hand side of the equation for f and c may contain (primitive-recursive) calls of
functions in module 1 on subtrees of t and arbitrary calls of the (only) function
in module 2. The function in module 2 (like g in pnon) is a substitution function,
i.e. designated nullary substitution constructors are replaced by parameters and
other constructors are left unchanged. In [16] it was shown, how such programs
can be transformed into macro tree transducers [8, 9], in which every function
(like f in pacc) may have arbitrary rank and is defined by a case analysis on the
root symbol c of its first argument t. The right-hand side of the equation for f
and c may contain (nested) recursive function calls on subtrees of t.

The accumulation technique of [16] is divided into three indirect transforma-
tion steps which are mainly based on a composition result [9, 15] for top-down
tree transducers [19, 21] with macro tree transducers and on the associativity of
substitution functions. Although the resulting programs avoid substitution func-
tions, they are not always more efficient than the original programs. In [16] and
in the present paper the efficiency is measured in the number of performed call-
by-need reduction steps. This point of view, which neglects the actual complexity
of rule applications, is also taken in, e.g., [20, 23, 24].

In [16] also the reverse transformation is presented. Both transformations
together induce that the classes of macro tree transducers and of the special
2-modular tree transducers have the same computational power. Although the
reverse transformation deteriorates in general the efficiency, it also has practical
relevance: In [12] it is extended to a deaccumulation technique which is useful to
improve the automatic verification of functional (and even imperative) programs.

In [17] the deficiencies of the accumulation technique in [16] were solved by
presenting a direct transformation which additionally employs let-expressions to
avoid causes of inefficiency. Moreover, it was shown in [17] that the transforma-
tion does not deteriorate the efficiency. To this end, a call-by-need reduction on
term graphs was defined and compared for the original and resulting program.
The efficiency result is based on the fact that the number of applications of
functions in module 1 of the original program equals the number of function ap-
plications in the resulting program. Hence, the applications of the substitution
function in module 2 of the original program are saved!

We simplify the presentation of [17] by avoiding an explicit call-by-need re-
duction and by adopting a technique of [20, 23, 24], where function applications
(in [23, 24] for (compositions of) macro tree transducers) additionally produce
special “ticking symbols” in order to make the number of performed (call-by-
name) reduction steps visible in the output. Instead of a call-by-need reduction
relation on term graphs which (implicitly) uses sharing to avoid that unevaluated
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function arguments are copied, we use a nondeterministic reduction relation on
expressions with an explicit denotation for sharing (cf., e.g., [2, 1]). Unfortu-
nately, this explicit sharing does not prevent that our nondeterministic reduction
relation creates a shared subexpression e such that e contains function applica-
tions and e is not relevant in the overall expression (in the sense that call-by-need
reduction would delete all references to e). To avoid that ticking symbols which
are generated by e are counted (and thus reduction steps needed to evaluate e),
we additionally use a counting function which takes care of such nonrelevant
subexpressions. Hence the concepts of explicit sharing and the counting function
provide a new technique to count call-by-need reduction steps.

2 Preliminaries

We denote the set of natural numbers including 0 by IN and the set IN − {0}
by IN+. For every m ∈ IN , the set {1, . . . , m} is denoted by [m]. The cardinality
of a set K is denoted by card(K). We use the sets X = {x0, x1, x2, x3, . . .},
Y = {y1, y2, y3, . . .}, and Z = {z1, z2, z3, . . .} of variables. For every n ∈ IN , let
Xn = {x1, . . . , xn}, Yn = {y1, . . . , yn}, and Zn = {z1, . . . , zn}. Let ⇒ be a binary
relation on a set K and n ∈ IN . Then, ⇒n denotes the n-fold composition and
⇒∗ the transitive, reflexive closure of ⇒. If k ⇒∗ k′ for k, k′ ∈ K and there is
no k′′ ∈ K such that k′ ⇒ k′′, then k′ is called a normal form of k with respect
to ⇒, which is denoted by nf (⇒, k), if it exists and if it is unique.

A ranked alphabet is a pair (C, rank ) where C is a finite set and rank is a
mapping which associates with every symbol c ∈ C a natural number called the
rank of c. We simply write C instead of (C, rank ) and assume rank as implicitly
given. The set of symbols of C with rank n is denoted by C(n) and if c ∈ C(n),
we also use the notation c(n). The set of trees (or terms) over C indexed by (a set
of variables) U , denoted by TC(U), is the smallest subset T ⊆ (C ∪ U ∪ {(, )})∗
such that U ⊆ T and for every c ∈ C(n) with n ∈ IN and t1, . . . , tn ∈ T :
(c t1 . . . tn) ∈ T . If c ∈ C(0), we write just c instead of (c). The set TC(∅) is
abbreviated by TC . If R is the set of rules of a term rewriting system, then ⇒R

denotes the (nondeterministic) reduction relation induced by R. If there is at
most one occurrence of a variable v in a term t, then we call t linear in v.

For a term t, pairwise distinct variables v1, . . . , vn, and terms t1, . . . , tn, we
denote by t[v1/t1, . . . , vn/tn] the term that is obtained from t by substituting for
every i ∈ [n] every occurrence of vi in t by ti. We abbreviate [v1/t1, . . . , vn/tn]
by [vi/ti], if the involved variables and terms are clear from the context. We use
a linear, “substitution-like” notation for term graphs to express the sharing of
subgraphs: e[z1 � e1, . . . , zn � en] denotes a term graph, in which for every
occurrence of zi in the subgraph denoted by e there is a directed edge from the
direct ancestor node of zi to the root node of the subgraph denoted by ei.

For the rest of the paper, let n ∈ IN+.

Definition 1. Let C be a ranked alphabet and U ∈ {Zn, ∅}. The set EC,n(U)
of C-expressions with sharing (and free variables of U) is defined by:
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– For every zj ∈ U : zj ∈ EC,n(U).
– For every c ∈ C(k) and e1, . . . , ek ∈ EC,n(U): (c e1 . . . ek) ∈ EC,n(U).
– For every e1, . . . , en ∈ EC,n(U) and e ∈ EC,n(Zn):

e[z1 � e1, . . . , zn � en] ∈ EC,n(U).

The set EC,n of C-expressions with sharing is defined as EC,n(∅). �

Note that a C-expression with sharing e ∈ EC,n(U) can be considered as a tree
e ∈ TC′(U) where C′ = C ∪{(·[z1 � ·, . . . , zn � ·])(n+1)} is the ranked alphabet
obtained from C by adding a new (n + 1)-ary symbol. Thus we can employ the
notions and notations, which we introduced for trees, also for C-expressions.

Example 2. Let C = {A(0), B(0), D(1), T (3)}. Then,

(T z1 z2 z1) ∈ EC,2(Z2),
(T z1 z2 z1)[z1 � (D z1), z2 � (T z1 z2 z1)] ∈ EC,2(Z2),
(T z1 z2 z1)[z1 � (D z1), z2 � (T z1 z2 z1)]

[z1 � (D A), z2 � (T A B A)] ∈ EC,2,

and the latter represents the depicted term graph. �
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If e1, . . . , en are clear from the context, then we abbreviate an expression of the
form e[z1 � e1, . . . , zn � en] by e[zi � ei].

In the following we define a function on C-expressions with sharing, which
constructs trees by unfolding all sharings.

Definition 3. Let C be a ranked alphabet and U ∈ {Zn, ∅}. The function
tree : EC,n(U) → TC(U) is defined as follows:

– For every zj ∈ U : tree(zj) = zj .
– For every c ∈ C(k) and e1, . . . , ek ∈ EC,n(U):

tree(c e1 . . . ek) = (c tree(e1) . . . tree(ek)).
– For every e1, . . . , en ∈ EC,n(U) and e ∈ EC,n(Zn):

tree(e[zi � ei]) = tree(e)[zi/tree(ei)]. �

We call zi ∈ Zn a free occurrence in e ∈ EC,n(Zn), if zi occurs in tree(e). Note
that this clarifies the scope of a sharing. The scope of z1, . . . , zn in an expression
e[zi � ei] is limited to the free occurrences of z1, . . . , zn in e.

3 Nonaccumulating and Accumulating Tree Transducers

First we define nonaccumulating tree transducers as functional source language.
Nonaccumulating tree transducers are special 2-modular tree transducers [10, 16].

Definition 4. An n-nonaccumulating tree transducer (for short n-ntt) is a tuple
M = (F,Sub, C, Π, R1, R2, rin), where

– F is a ranked alphabet (of function symbols) with F = F (1),
– Sub = {sub(n+1)} (substitution function),
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– C is a ranked alphabet (of constructors),
– Π = {Π1, . . . , Πn} ⊆ C(0) with card(Π) = n (the substitution constructors)

such that F , Sub, and C are pairwise disjoint,

– R1 is a set of rules such that for every f ∈ F and c ∈ C(k) there is exactly
one rule f (c x1 . . . xk) = rhsR1,f,c

with rhsR1,f,c ∈ RHS(F,Sub, C, Xk), where for every k ∈ IN ,
RHS(F,Sub, C, Xk) is the smallest set RHS such that
• for every f ∈ F and i ∈ [k]: (f xi) ∈ RHS ,
• for every r0, . . . , rn ∈ RHS : (sub r0 . . . rn) ∈ RHS , and
• for every c ∈ C(l) and r1, . . . , rl ∈ RHS : (c r1 . . . rl) ∈ RHS ,

– R2 is a set of rules such that
• for every j ∈ [n] there is the rule sub Πj y1 . . . yn = yj

• and for every c ∈ (C −Π)(k) there is the rule
sub (c x1 . . . xk) y1 . . . yn = c (sub x1 y1 . . . yn) . . . (sub xk y1 . . . yn),

– rin ∈ RHS(F,Sub, C, X1) is the initial right-hand side. �

Since every function is defined by recursion on its first argument (i.e., the only
argument in case of F -functions), this argument is called recursion argument.
The other arguments are called context arguments. The set RHS formalizes the
description of right-hand sides found in the introduction. The initial right-hand
side rin serves as call pattern for the n-ntt, where x1 acts as a placeholder for the
actual input tree. Note that the concept of n-ntts (with one substitution function
of rank n + 1) can easily be generalized to a model with several substitution
functions. This, however, does not increase the computational power.

In the following examples we will avoid rules, which are never used.

Example 5. Mnon = (F,Sub, C, Π, R1, R2, rin) is a 2-ntt where F = {f},
Sub = {g(3)}, C = {S(1), Z(0), A(0), B(0), D(1), T (3)}, Π1 = A, Π2 = B, R1
and R2 contain the f -rules and g-rules, respectively, of pnon, and rin = (f x1).

�
Now we present n-ntts with sharings as abstractions for our functional source
programs. In contrast to functional programs, where in a call-by-need reduction
the sharing of expressions which are bound to variables of rules is performed
implicitly, in n-ntts with sharings the sharing is performed explicitly, whenever
there is the risk to copy unevaluated expressions (cf., e.g., [2, 1]). This concerns
only the context arguments of substitution functions (since other arguments
are not copied or are constructor trees). To denote explicit sharing in a right-
hand side of a rule or in a sentential form, we also use expressions with sharing.
Thus, because of possibly nested substitution functions during an evaluation, also
expressions with sharing may occur in the recursion argument of substitution
functions. Hence they must be handled by a special rule. Actually, n-ntts with
sharings could be considered as special “2-modular tree-to-graph transducers”.
See [10, 11] for the concepts of modular tree transducers and top-down tree-
to-graph transducers, respectively. Note that the additional sharing mechanism
does not change the computational power of n-ntts, but may improve efficiency.
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Definition 6. An n-nonaccumulating tree transducer with sharings (for short
n-sntt) is a tuple M = (F,Sub, C, Π, R1, R2, rin), where

– F , Sub, C, Π , R1, and rin are defined as in Definition 4,
– R2 is a set of rules such that

• for every j ∈ [n] there is the rule sub Πj y1 . . . yn = yj ,
• for every c ∈ (C −Π)(k) there is the rule2

sub (c x1 . . . xk) y1 . . . yn

= (c (sub x1 z1 . . . zn) . . . (sub xk z1 . . . zn))[zi � yi],
• and there is the rule3

sub x0[zi � xi] y1 . . . yn = x0[zi � (sub xi z1 . . . zn)][zi � yi]. �
Note that in the last rule in the previous definition sub walks into x1, . . . , xn, but
not into x0. This is due to the fact that every instantiation of x0[zi � xi] was
generated by an inner occurrence of sub which already handled the substitution
constructors in x0. Moreover, it is easily seen that the inner occurrence of sub
does not introduce substitution constructors in x0 because only calls of the form
(sub xi z1 . . . zn) can occur in x0. We further note that an application of the last
rule represents a short cut, since a call-by-need reduction on term graphs would
(i) walk stepwise through the expression bound to x0 and would (ii) end up with
different occurrences of sub at different occurrences of a zi (thus performing
several runs on the expression bound to xi).

Example 7. M̃non = (F,Sub, C, Π, R1, R2, rin) is a 2-sntt, where F = {f},
Sub = {g(3)}, C = {S(1), Z(0), A(0), B(0), D(1), T (3)}, Π1 = A, Π2 = B, R1
contains the f -rules of pnon and R2 contains rules

g A y1 y2 = y1
g B y1 y2 = y2
g (D x1) y1 y2 = D (g x1 y1 y2)
g (T x1 x2 x3) y1 y2 = (T (g x1 z1 z2) (g x2 z1 z2) (g x3 z1 z2))[zi � yi]
g x0[zi � xi] y1 y2 = x0[zi � (g xi z1 z2)][zi � yi],

and rin = (f x1). Let R = R1 ∪R2. Then,

f (S3 Z) ⇒5
R g (g (T A B A) (D A) (T A B A)) (D A) (T A B A)

⇒4
R g (T z1 z2 z1)[z1 � (D A), z2 � (T A B A)] (D A) (T A B A)

⇒R (T z1 z2 z1)[z1 � (g (D A) z1 z2), z2 � (g (T A B A) z1 z2)]
[z1 � (D A), z2 � (T A B A)]

⇒6
R (T z1 z2 z1)[z1 � (D z1), z2 � (T z1 z2 z1)[z1 � z1, z2 � z2]]

[z1 � (D A), z2 � (T A B A)]. �

Our main transformation will deliver accumulating tree transducers with shar-
ings, which could be considered as special “macro tree-to-graph transducers”.
See [9, 11] for the concepts of macro tree transducers and top-down tree-to-graph
transducers, respectively.
2 If c is nullary or unary, then the explicit sharing will be avoided in examples.
3 If n = 1, then the explicit sharing [zi � yi] could be avoided.
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Definition 8. An n-accumulating tree transducer with sharings (for short n-
satt) is a tuple M = (F, C, R, rin), where

– F is a ranked alphabet (of function symbols) with F = F (n+1),
– C is a ranked alphabet (of constructors), such that F and C are disjoint,
– R is a set of rules such that for every f ∈ F and c ∈ C(k) there is exactly

one rule f (c x1 . . . xk) y1 . . . yn = rhsR,f,c

with rhsR,f,c ∈ RHS ′(F, C, Xk , Yn), where for every j ∈ [n], the right-hand
side rhsR,f,c is linear in yj , and for every k ∈ IN and U ∈ {Yn, Zn, ∅}, the
set RHS ′(F, C, Xk, U) is the smallest set such that
• for every f ∈ F , i ∈ [k], and r1, . . . , rn ∈ RHS ′(F, C, Xk, U):

(f xi r1 . . . rn) ∈ RHS ′(F, C, Xk, U),
• for every c ∈ C(l) and r1, . . . , rl ∈ RHS ′(F, C, Xk , U):

(c r1 . . . rl) ∈ RHS ′(F, C, Xk, U),
• for every r1, . . . , rn ∈ RHS ′(F, C, Xk, U) and r0 ∈ RHS ′(F, C, Xk , Zn):

r0[zi � ri] ∈ RHS ′(F, C, Xk, U), and
• for every u ∈ U : u ∈ RHS ′(F, C, Xk, U),

– rin ∈ RHS ′(F, C, X1, ∅) is the initial right-hand side. �

The linearity condition in the previous definition will be called context-linearity.
Note that it guarantees that no unevaluated subexpressions are copied in a
nondeterministic reduction relation. This fact will be needed in Subsections 4.3
and 5.3, where n-satts are realized by functional programs under call-by-need
evaluation, such that the number of performed reduction steps is equal.

Example 9. Macc = (F ′, C, R, r′in) is a 2-satt, where F ′ = {f (3)}, C = {S(1),
Z(0), A(0), B(0), D(1), T (3)}, R contains the rules

f Z y1 y2 = y2
f (S x1) y1 y2 = (f x1 (D z1) (T z1 z2 z1))[zi � yi]

and r′in = (f x1 A B). Then,

f (S3 Z) A B ⇒R (f (S2 Z) (D z1) (T z1 z2 z1))[z1 � A, z2 � B]
⇒R (f (S Z) (D z1) (T z1 z2 z1))

[z1 � (D z1), z2 � (T z1 z2 z1)][z1 � A, z2 � B]
⇒2

R (T z1 z2 z1)[z1 � (D z1), z2 � (T z1 z2 z1)]
[z1 � (D z1), z2 � (T z1 z2 z1)][z1 � A, z2 � B]. �

For every n-sntt M = (F,Sub, C, Π, R1, R2, rin) with R = R1∪R2 and for every
n-satt M = (F, C, R, rin), ⇒R is locally confluent, because there are no critical
pairs. Similarly to modular tree transducers [10] and macro tree transducers [9],
⇒R is also terminating, since every rule application to a function symbol with
its recursion argument t delivers only (i) new function symbols with subtrees of
t as recursion arguments or (in the case of an n-sntt) (ii) occurrences of the sub-
stitution function which does not call any other function and also “strictly walks
down” on its recursion argument. Thus, for every t ∈ TC , nf (⇒R, rin[x1/t]) ex-
ists. Moreover, there are no function symbols in this normal form, because all
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functions are exhaustively defined on their possible recursion arguments (in par-
ticular on all outputs of functions which are nested in their recursion arguments).
Hence, the normal form is a C-expression with sharing.

Definition 10. Let M = (F,Sub, C, Π, R1, R2, rin) be an n-sntt with R = R1∪
R2 or let M = (F, C, R, rin) be an n-satt. The tree transformation computed
by M is the function τM : TC → TC , which is for every t ∈ TC defined by
τM (t) = tree(nf (⇒R, rin[x1/t])). �

4 Accumulation Technique

Our transformation technique consists of three steps: (i) a preprocessing step
which abstracts n-ntts into n-sntts, (ii) the main transformation on the level
of tree transducers with sharings (transforming n-sntts into n-satts), and (iii) a
postprocessing step which realizes n-satts as functional programs. Since the pre-
and postprocessing steps are relatively simple compared to the main transfor-
mation, they will be presented only informally.

4.1 Preprocessing

Explicit sharings which were introduced in the previous section, are added. More
exactly, the sub-rules of Definition 4 are replaced by those of Definition 6. Note
that this preprocessing step simplifies our efficiency considerations; the main
transformation could also take n-ntts as inputs.

4.2 Main Transformation

The main transformation processes an n-sntt M and yields an n-satt M ′. The
construction introduces a new (n + 1)-ary function symbol f for every function
symbol f of M . The context arguments of the new f shall store replacements
for the substitution constructors. Intuitively speaking, a call like (f t e1 . . . en)
should evaluate (using M ′) to the result of (sub (f t) e1 . . . en) (evaluated us-
ing M). Thereby the intermediate result that is produced by the call (f t) is
avoided. The formalization of this intuitive relation can be found in Lemma 13.
The construction uses an auxiliary function sub to transform right-hand sides of
rules thereby evaluating substitutions at compile time.

Definition 11. Let M = (F,Sub, C, Π, R1, R2, rin) be an n-sntt. First, we de-
fine the set R2 of transformation rules which contains

– for every j ∈ [n] a rule sub Πj y1 . . . yn = yj ,
– for every c ∈ (C −Π)(k) a rule4

sub (c x1 . . . xk) y1 . . . yn

= (c (sub x1 z1 . . . zn) . . . (sub xk z1 . . . zn))[zi � yi],
– for every f ∈ F a rule sub (f x0) y1 . . . yn = f x0 y1 . . . yn,

4 If c is nullary or unary, then the explicit sharing will be avoided in examples.
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– and the rule5

sub (sub x0 x1 . . . xn) y1 . . . yn

= (sub x0 (sub x1 z1 . . . zn) . . . (sub xn z1 . . . zn))[zi � yi].

Then, the n-satt constructed from M by accumulation is defined as acc(M) =
(acc(F ), C, acc(R1), acc(rin)), where

– acc(F ) = {f (n+1) | f ∈ F},
– acc(R1) contains for every f ∈ acc(F ) and c ∈ C(k) the rule

f (c x1 . . . xk) y1 . . . yn = nf (⇒R2
, sub rhsR1,f,c y1 . . . yn),

– acc(rin) = nf (⇒R2
, sub rin Π1 . . . Πn). �

It can be shown easily that acc(M) is in fact a well-defined n-satt. In particu-
lar, the context-linearity is induced by the fact that the sub-rules do not copy
variables. Given the above intuition, the rules for sub should be straightforward:
The first rule avoids the explicit construction of Πj-symbols. The second rule
is standard and the third rule encodes our intuition. Finally, the fourth rule
represents the “associativity” of substitutions. Note the similarity of these rules
to the laws (1), (2), (∗), and (3), respectively, of [25]. In the second and fourth
rule we use explicit sharings in order to avoid that occurrences of F -functions
are copied and thus are executed more than once in the transformed program.

Example 12. Let M̃non = (F,Sub, C, Π, R1, R2, rin) be the 2-sntt from Exam-
ple 7. Then, the set R2 contains the rules

g A y1 y2 = y1

g B y1 y2 = y2

g (D x1) y1 y2 = D (g x1 y1 y2)
g (T x1 x2 x3) y1 y2 = (T (g x1 z1 z2) (g x2 z1 z2) (g x3 z1 z2))[zi � yi]
g (f x0) y1 y2 = f x0 y1 y2

g (g x0 x1 x2) y1 y2 = (g x0 (g x1 z1 z2) (g x2 z1 z2))[zi � yi]

and the 2-satt constructed from M̃non by accumulation is defined as M̃acc =
acc(M̃non) = (acc(F ), C, acc(R1), acc(rin)), where acc(F ) = {f (3)}, acc(R1)
contains the following rules with underlined left- and right-hand sides

f Z y1 y2 = nf (⇒R2
, g B y1 y2) = y2,

f (S x1) y1 y2 = nf (⇒R2
, g (g (f x1) (D A) (T A B A)) y1 y2)

= nf (⇒R2
, (g (f x1) (g (D A) z1 z2) (g (T A B A) z1 z2))[zi � yi])

= (f x1 (D z1) (T z1 z2 z1)[zi � zi])[zi � yi]

and acc(rin) = nf (⇒R2
, g (f x1) A B) = (f x1 A B). �

The correctness proof6 of the main transformation is based on the following
lemma which formalizes our intuition from the beginning of this subsection.
5 If n = 1, then the explicit sharing could be avoided.
6 Available at www.orchid.inf.tu-dresden.de/gdp/conferences/amast06.shtml
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Lemma 13. Let M = (F,Sub, C, Π, R1, R2, rin) be an n-sntt and acc(M) =
(acc(F ), C, acc(R1), acc(rin)). For every f ∈ F and t ∈ TC :

tree(nf (⇒R1∪R2 , sub (f t) z1 . . . zn)) = tree(nf (⇒acc(R1), f t z1 . . . zn)). �

Theorem 14. Let M be an n-sntt. Then, τM = τacc(M). �

4.3 Postprocessing

Finally, an n-satt resulting from the main transformation is translated into a
functional program by replacing in the right-hand sides of rules and in the ini-
tial right-hand side the explicit sharings with let-expressions. More exactly, an
expression of the form

r[z1 � r1, . . . , zn � rn] is replaced by let {v1 = r1; . . . ; vn = rn} in r,

where v1, . . . , vn are fresh variables (which can be obtained using tree-structured
addresses in the translation process) and r1, . . . , rn, r result from recursively
replacing explicit sharings in r1, . . . , rn, r, respectively, and additionally using
v1, . . . , vn instead of the free occurrences of z1, . . . , zn in r.

Example 15. Let M̃acc be the 2-satt of Example 12. Postprocessing translates
f (S x1) y1 y2 = (f x1 (D z1) (T z1 z2 z1)[zi � zi])[zi � yi] into the rule

f (S x1) y1 y2 = let {v1 = y1; v2 = y2}
in f x1 (D v1) (let {v11 = v1; v12 = v2} in (T v11 v12 v11)).�

A more elaborate translation could simplify (or even avoid) some let-expressions,
e.g. if zj does not occur or occurs only once freely in r or if rj = zj or rj = yj

(i.e. we have zj � zj or zj � yj). For the case rj = yj note that the resulting
program will be again treated call-by-need, and hence yj is shared implicitly.

Example 16. Instead of constructing the rule as in Example 15, the following
rule can be used (cf. also the introduction):

f (S x1) y1 y2 = f x1 (D y1) (T y1 y2 y1) �

5 Efficiency Non-deterioration by Accumulation

Our aim is to show the efficiency non-deterioration for call-by-need reduction.
Unfortunately, it is technically difficult to formally compare the number of steps
caused by deterministic reduction relations (cf. e.g. [17]). Hence we will base our
comparison on the nondeterministic reduction relations for n-sntts and n-satts.

Therefore we first present a mechanism such that the number of call-by-need
reduction steps caused by the R1-rules of an n-ntt M equals the number of
“relevant” nondeterministic reduction steps caused by the R1-rules of the cor-
responding n-sntt M̃ : In both reduction relations the copying of unevaluated
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applications of F -functions is avoided (by implicit and explicit sharing, respec-
tively). But, whereas the deletion of a useless unevaluated application of an
F -function is performed automatically in a call-by-need reduction, the nonde-
terministic reduction relation for M̃ either simply evaluates such an application
and later moves the result into a subexpression ei of an expression of the form
e[zi � ei] or, vice versa, the reduction relation for M̃ first moves it into an ei

of an expression e[zi � ei], where it is evaluated later. In both situations the
normal form of e will not contain a free occurrence of zi, but nevertheless the use-
less evaluation is performed! In order to consider only the relevant R1-reduction
steps, in our mechanism (i) every application of an R1-rule will additionally
generate a special symbol ◦ and (ii) in the normal form only those ◦-symbols
are counted by a function step, which do not occur in a subexpression ei of an
expression e[zi � ei], where zi does not occur freely in e.

Then we use the same counting mechanism for the n-satt acc(M̃) in order to
prove that the number of relevant R1-reduction steps of M̃ equals the number
of relevant reduction steps of acc(M̃). Together with a final argumentation that
the postprocessing phase does not change the number of reduction steps, we
obtain the desired efficiency result. Note that our comparison procedure does
not consider the R2-reduction steps of M or M̃ , which do not occur in acc(M̃)
and hence are saved by accumulation!

In the following we assume that ◦ is a new unary symbol and for every ranked
alphabet C we define C◦ = C ∪ {◦}.

Definition 17. Let M = (F,Sub, C, Π, R1, R2, rin) be an n-sntt. The n-sntt
M◦ = (F,Sub, C◦, Π, R◦

1, R
◦
2, rin) is defined by

– if R1 contains a rule f (c x1 . . . xk) = rhsR1,f,c,
then R◦

1 contains a rule f (c x1 . . . xk) = ◦ rhsR1,f,c, and
– R◦

1 contains for every f ∈ F a (dummy; never applied) rule f (◦ x1) = . . .,
– R◦

2 contains the rules of R2, and
– R◦

2 contains the rule sub (◦ x1) y1 . . . yn = ◦ (sub x1 y1 . . . yn).

Let M=(F, C, R, rin) be an n-satt. The n-satt M◦=(F, C◦, R◦, rin) is defined by

– if R contains a rule f (c x1 . . . xk) y1 . . . yn = rhsR,f,c,
then R◦ contains a rule f (c x1 . . . xk) y1 . . . yn = ◦ rhsR,f,c, and

– R◦ contains for every f ∈ F a (dummy) rule f (◦ x1) y1 . . . yn = . . .. �

Note that by the additional sub-rule of R◦
2 in the previous definition the ◦-

symbols produced by R◦
1-rules are retained.

Definition 18. Let C be a ranked alphabet.
The function step : EC◦,n(Zn) → IN is defined as follows:

– For every e ∈ EC◦,n(Zn): step(◦ e) = 1 + step(e).
– For every c ∈ C(k) and e1, . . . , ek ∈ EC◦,n(Zn):

step(c e1 . . . ek) =
∑k

i=1 step(ei).
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– For every e1, . . . , en, e ∈ EC◦,n(Zn):
step(e[zi � ei]) = step(e) +

∑n
i=1(step(ei) ∗ rel(zi, e)).

– For every i ∈ [n]: step(zi) = 0.

The function rel : Zn×EC◦,n(Zn) → {0, 1} is for every i ∈ [n] and e ∈ EC◦,n(Zn)
defined by rel(zi, e) = 1 iff zi occurs in tree(e). �
Example 19. Since the phenomenon of non-relevant subexpressions does not
occur in our running example, we choose an artificial example here:

step((◦ z1)[z1 � (◦ A)][z1 � (◦ A)])
= step((◦ z1)[z1 � (◦ A)]) + step(◦ A) ∗ rel(z1, (◦ z1)[z1 � (◦ A)])
= step(◦ z1) + step(◦ A) ∗ rel(z1, (◦ z1)) + 1 ∗ 0 = 1 + 1 ∗ 1 + 1 ∗ 0 = 2 �

Now we have to consider again our three transformation steps, where the sec-
ond step involves a formal proof and the first and last step are argumentations
concerning call-by-need reduction, which we avoided to define formally.

5.1 Preprocessing

For an n-ntt M = (F,Sub, C, Π, R1, R2, rin) and a term t ∈ TC we will denote
by cbnR1(t) the number of R1-reduction steps which are used to reduce rin[x1/t]
to a term graph corresponding to nf (⇒R1∪R2 , rin[x1/t]) with a call-by-need re-
duction. Let M̃ = (F, {sub}, C, Π, R̃1, R̃2, r̃in) result from M by preprocessing.
Then we have to argue that

cbnR1(t) = step(nf (⇒R̃◦
1∪R̃◦

2
, r̃in[x1/t])).

First we only consider the F -functions: Since every application of a rule in R̃◦
1

delivers exactly one occurrence of ◦, the number of occurrences of ◦ in nf (⇒R̃◦
1
,

r̃in[x1/t]) equals the number of applied R̃1-steps to calculate nf (⇒R̃1
, r̃in[x1/t]).

This number is in turn equal to the number of applied R1-steps to calculate a
term graph corresponding to nf (⇒R1 , rin[x1/t]) with call-by-need, because oc-
currences of F -functions are not nested and hence are neither copied nor deleted.

Now we additionally consider the substitution function sub: (i) Occurrences of
F -functions in the recursion argument of sub are neither copied nor deleted in a
reduction by R1∪R2. Correspondingly, in a reduction by R̃◦

1∪ R̃◦
2 occurrences of

◦ in the recursion argument of sub are exactly once reproduced and counted by
step. (ii) In a call-by-need reduction by R1 ∪R2 no application of an F -function
inside a context argument of sub is copied and also in a reduction by R̃◦

1 ∪ R̃◦
2

(with explicit sharing) no corresponding occurrence of ◦ is copied. (iii) But, in a
call-by-need reduction by R1 ∪R2, every R1-step which constitutes a subgraph
of the term graph corresponding to nf (⇒R1 , rin[x1/t]), such that the subgraph
occurs in a deleted context argument position j of an occurrence of sub will not
be executed, whereas a reduction by R̃◦

1 ∪ R̃◦
2 may behave differently: either the

occurrence of ◦ in nf (⇒R̃◦
1
, r̃in[x1/t]) that corresponds to the above R1-step is

also deleted (by a sub-rule on a Πi with i = j) or it is shifted into a subexpression
ej of an expression of the form e[zi � ei] in which zj does not occur freely in e
and hence it is not counted by step.
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5.2 Main Transformation

The proof7 of efficiency non-deterioration of the main transformation is based
on the following lemma. Note the similarity of this lemma to Lemma 13: Instead
of the reduction relations of M and acc(M), their “◦-generating versions” are
used here. Moreover, instead of calculating the output tree by tree, the number
of ◦-symbols is counted by step.

Lemma 20. Let M = (F,Sub, C, Π, R1, R2, rin) be an n-sntt and acc(M) =
(acc(F ), C, acc(R1), acc(rin)). For every f ∈ F and t ∈ TC :

step(nf (⇒R◦
1∪R◦

2
, sub (f t) z1 . . . zn)) = step(nf (⇒acc(R1)◦ , f t z1 . . . zn)). �

Theorem 21. Let M = (F,Sub, C, Π, R1, R2, rin) be an n-sntt and acc(M) =
(acc(F ), C, acc(R1), acc(rin)). Then, for every t ∈ TC :

step(nf (⇒R◦
1∪R◦

2
, rin[x1/t])) = step(nf (⇒acc(R1)◦ , acc(rin)[x1/t])). �

5.3 Postprocessing

Let-expressions do not cause additional reduction steps, rather they denote in
functional languages explicit sharings. Thus, if we denote for an n-satt M =
(F, C, R, rin), for R̃ and r̃in obtained from R and rin , respectively, by introducing
let-expressions, and for a term t ∈ TC , by cbnR̃(t) the number of call-by-need
reduction steps which are used to reduce r̃in[x1/t] to a term graph corresponding
to nf (⇒R, rin[x1/t]) with R̃, then it suffices to argue that

cbnR̃(t) = step(nf (⇒R◦ , rin[x1/t])).

The introduction of let-expressions does not change the copying or deletion prop-
erties of the rules in R. Moreover, in a call-by-need reduction by R̃ no function
application inside some context argument is copied, and because of the context-
linearity of R and hence also of R◦, no corresponding occurrence of ◦ is copied
in a reduction by R◦. Hence there is only one main difference in the calculations
of R̃ and R◦: On the one hand, in a call-by-need reduction by R̃ a function
application is not evaluated, if it occurs in a subexpression ej of an expression
of the form let {v1 = e1; . . . ; vn = en} in e, in which e is evaluated and vj does
not occur in e. On the other hand, the corresponding function application in a
subexpression e′j of an expression of the form e′[zi � e′i] (where v1, . . . , vn corre-
spond to z1, . . . , zn, respectively) is evaluated by R◦ and a symbol ◦ is produced.
But since zj does not occur freely in e′, the produced ◦ is not counted by step.

6 Future Work

We have proved that our accumulation technique does not deteriorate the ef-
ficiency, where efficiency is measured in the number of performed call-by-need
7 Available at www.orchid.inf.tu-dresden.de/gdp/conferences/amast06.shtml
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reduction steps. This point of view neglects the actual complexity of reduction
steps. In particular, we weigh applications of unary functions against applications
of the corresponding functions with accumulating parameters. A more elaborate
efficiency measure could be based on weighted reduction steps, e.g., by using
more than one ◦-symbol for a rule with parameters. Furthermore, it would be
interesting to develop a syntactic characterization of those programs, for which
the time-complexity is changed by accumulation (like in our running example).

In [22] list manipulating operations, in particular append, are eliminated by
employing shortcut deforestation [13, 7] instead of tree transducer composition
as in [16]. To this end, the technique from [22] does not only abstract from list
constructors, but also from the list manipulating operations. We believe that this
transformation can be generalized to eliminate also tree manipulating operations
as, e.g., substitutions. But, as already stated in the Conclusion of [22], “a general
statement about the relation between the runtimes of original and transformed
programs is hard to make”. Nevertheless it would be interesting to compare such
a transformation with our approach.
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20. D. Sands. A näıve time analysis and its theory of cost equivalence. Journal of

Logic and Computation, 5(4):495–541, 1995.
21. J.W. Thatcher. Generalized2 sequential machine maps. J. Comput. Syst. Sci.,

4:339–367, 1970.
22. J. Voigtländer. Concatenate, reverse and map vanish for free. In ICFP’02, Pitts-

burgh, USA, Proceedings, pages 14–25. ACM Press, 2002.
23. J. Voigtländer. Formal efficiency analysis for tree transducer composition. Tech.

Report TUD-FI04-08, TU Dresden, 2004. To appear in Theory Comput. Syst.
24. J. Voigtländer. Tree Transducer Composition as Program Transformation. PhD

thesis, TU Dresden, 2004.
25. P. Wadler. The concatenate vanishes. Note, University of Glasgow, 1987 (Revised,

1989).



Decomposing Interactions
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Abstract. In UML 2.0 sequence diagrams have been considerably ex-
tended and are now fundamentally better structured. Interactions in se-
quence diagrams can be structured using so-called interaction fragments,
including alt (alternative behaviour), par (parallel behaviour), neg (for-
bidden behaviour), assert (mandatory behaviour) and ref (reference
another diagram). The operator ref in particular greatly improves the
way diagrams can be decomposed. In previous work we have given a se-
mantics to a subset of sequence diagrams using labelled event structures,
a true-concurrent model that naturally captures alternative and parallel
behaviour. In this paper, we expand that work to address refinement and
show how to obtain a refined model by means of a powerful categorical
construction over two categories of labelled event structures. The under-
lying motivation for this work is reasoning and verification of complex
scenario-based inter-object behavioural models. We conclude the paper
with a discussion on future work.

1 Introduction

In UML 2.0 sequence diagrams have been considerably extended and are now
fundamentally better structured. Interactions in sequence diagrams can be struc-
tured using interaction fragments which include operators for capturing alterna-
tive behaviour (alt), parallel behaviour (par), negative or forbidden behaviour
(neg), the only valid or mandatory behaviour (assert), and reference or include
the behaviour described in another diagram (ref).

One of the most significant improvements of sequence diagrams in UML 2.0 is
the possibility to decompose a diagram into subparts. UML already allowed this
for class diagrams and state diagrams, but there was no standard way to decom-
pose a sequence diagram in UML 1.x. Needless to say, the ability to decompose
diagrams is crucial for managing the complexity of interactions in large-scale
systems.

Interactions become more complex because interacting elements may be added
to interactions as designs evolve and are elaborated, or simply because more mes-
sages, more alternatives and more variants are added. The addition of operators
such as alt and par help, but there is still a need to move all the details of an
interaction and show it on a separate diagram, allowing this interaction to be
reused in several diagrams. In UML 2.0 decomposition is facilitated in two ways:

M. Johnson and V. Vene (Eds.): AMAST 2006, LNCS 4019, pp. 189–203, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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referencing interaction fragments and decomposing lifelines. These mechanisms
are borrowed directly from Message Sequence Charts (MSCs) [1].

In previous work [2] we have given a semantics to a subset of sequence di-
agrams using labelled event structures, a true-concurrent model that naturally
captures alternative and parallel behaviour. In this paper, we expand that work
to address refinement and show how to obtain a refined model by means of a
powerful categorical construction over two categories of labelled event structures.
This enables reasoning and verification of complex scenario-based inter-object
behavioural models. Moreover, the distributed logic used in [2] to express interac-
tions is in fact hierarchical and can be used in addition to express properties over
unrefined and refined models. This is, however, beyond the scope of the present
paper. Our main contribution in this paper is the automatic construction of
refined sequence diagram models, in other words a novel categorical semantics
for the decomposition mechanisms available in UML 2.0 sequence diagrams. De-
spite the fact that these mechanisms have been borrowed from MSCs, and MSCs
have a well known standard algebraic semantics (see [3]), this semantics is not
complete as it does not cover the mentioned decomposition mechanisms.

The paper is structured as follows. In Section 2, we give an overview of se-
quence diagrams in UML 2.0. In Section 3 we introduce our underlying semantic
model, namely labelled event structures, describe the categorical properties of
two categories of event structures, and present a powerful categorical construc-
tion for composing event structures. Section 4 recalls how to use event structures
for modelling sequence diagrams, and is followed by Section 5 where we show
how to build a refined model for a given sequence diagram that uses decompo-
sition mechanisms. It defines a reference refinement diagram that serves as an
input for the categorical construction of Section 3.3. The paper finishes with
some concluding remarks and ideas for future work.

2 Sequence Diagrams in UML 2.0

Sequence diagrams are the more commonly used diagram for capturing inter-
object behaviour. Graphically, a sequence diagram has two dimensions: an hori-
zontal dimension representing the instances participating in the scenario, and a
vertical dimension representing time. An instance can correspond to a particular
object or a role played in the interaction. A role may be a part of a collaboration
and/or an internal part of a structured class, component or subsystem. An in-
stance has a vertical dashed line called lifeline representing the existence of the
instance at a particular time; the order of events along a lifeline is significant
denoting, in general, the order in which these events will occur.

A message is a communication between two instances which can cause an
operation to be invoked, a signal to be raised, an instance to be created or
destroyed. Messages are shown as horizontal arrows from the lifeline of one in-
stance to the lifeline of another. A message specifies the kind of communication
between instances (synchronous or asynchronous), and the sender and receiver
event occurrences associated to it. In this paper, we do not consider lost and
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found messages. We do, however, allow the message sender or receiver to be
unspecified using what is called a gate.

A sequence diagram is enclosed in a frame and the five-sided box at the up-
per lefthand corner names the sequence diagram. Further, interactions can be
structured using so-called interaction fragments. Each interaction fragment has
at least one operator held in the five-sided box at the upper left corner of the
fragment. There are several possible operators, for example, alt (alternative be-
haviour), par (parallel behaviour), neg (forbidden behaviour), assert (manda-
tory behaviour), loop (repeated behaviour), ref (reference another diagram),
and so on. Depending on the operator used, an interaction fragment consists of
one or more operands. In the case of neg, assert, loop and ref the fragment
has exactly one operand, whilst for most other operators it has several. Fig. 1
shows an example of a sequence diagram using UML 2.0 constructs.

:TicketDB :Account

:Order

alt

sd processOrder

create()

[get next item]

reserve(date,count)

add(seats)

[available]

[unavailable]

reject

debit(cost)

interaction use

alternative 

loop condition

guard

get existing customer

synchronous call

return

operands

gate

asynchronous call ref

loop

Fig. 1. A sequence diagram

The semantics of an interaction operator is described informally in the UML
2.0 superstructure specification [4]. Below we give the meaning of some operators
used in this paper.

sd names a sequence diagram
ref references an interaction fragment which appears in a different diagram.

This fragment is called an interaction use.
alt represents a choice of behaviour. At most one of the operands will execute.

The operand that executes must have a guard expression that evaluates to
true at this point in the interaction. If several guards are true, one of them
is selected nondeterministically for execution.
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par represents a parallel merge between the behaviours of the operands. The
event occurrences of the different operands can be interleaved in any way
as long as the ordering imposed by each operand as such is preserved.

In this paper, we are mainly interested in the formal semantics of the ref-
erence operator. Other operators have been dealt with in [2] by providing a
true-concurrent semantics to sequence diagrams.

As mentioned earlier, decomposition in UML 2.0 sequence diagrams is pos-
sible by referencing interaction fragments (called interaction uses) and lifeline
decomposition. In Fig. 1 we have seen one example of the former, and Fig. 2
shows both cases. In this example, a corresponds to a part or instance that is

sd M

m1

m2

m3

a b c

gate

gate

lifeline decomposition

ref L

ref
N

use
interaction

Fig. 2. Decomposition in sequence diagrams

itself decomposed in diagram L. This means that any point along the lifeline of a
corresponds to a gate, and the instances sending messages m1 and m3 (not neces-
sarily the same) are left unspecified. The sender of these messages is only known
to diagram L. Similarly, the receiver of message m3 is only known to diagram N.
In diagram M, we know that instances b and c are involved in the interaction
N. Fig. 3 shows both referenced diagrams. Lifeline decomposition is particularly

a0 a1 a2

ma1
m1

ma2

m3

sdL

b c d

sd N

m3

m4
m6
m7

m5

gate

Fig. 3. Lifeline decomposition (left) and referenced interaction fragment (right)

useful when modelling component-based systems where the internals of a com-
ponent (in this case a) are intentionally hidden. For example, we may want
to replace a by a similar or updated component, and even if the interactions
described in diagram L change, diagram M itself remains unchanged.
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We borrow the concept location introduced in Live Sequence Charts (LSCs)
[5] which is missing in sequence diagrams, but is useful semantically. Locations
are the points in the lifeline of an instance which correspond to the occurrence
of events (see the circles on the lifelines b and c of diagram N in Fig. 3). For
sequence diagrams, we consider that all instances (except lifeline decomposition
instances like instance a in Fig. 2) have at least two locations: an initial location
(corresponding to the beginning of the diagram or instance creation) and a
final location (corresponding to the end of the diagram or instance destruction).
Further locations are associated with the sending and receiving of messages, the
beginning and the end of interaction fragments, and conditions (state invariants
or interaction constraints)1. The locations along a single lifeline and within an
interaction operand are ordered top-down; therefore, a partial order is induced
among these locations determining the order of execution. Notice that locations
from different operands of an alt or par fragment are not ordered in any way.
In the first case they are part of different execution traces whereas in the second
case they are to be executed in parallel.

3 The Model

3.1 Event Structures: Basic Notions

We recall some basic notions on the model we use, namely labelled prime event
structures [6].

Prime event structures, or event structures for short, allow the description
of distributed computations as event occurrences together with relations for
expressing causal dependency and nondeterminism. The first relation is called
causality, and the second conflict. The causality relation implies a (partial) order
among event occurrences, while the conflict relation expresses how the occur-
rence of certain events excludes the occurrence of others. Consider the following
definition of event structures.

Event Structure. An event structure is a triple E = (Ev, →∗, #) where Ev is
a set of events and →∗, # ⊆ Ev × Ev are binary relations called causality and
conflict, respectively. Causality →∗ is a partial order. Conflict # is symmetric
and irreflexive, and propagates over causality, i.e., e#e

′ →∗ e
′′ ⇒ e#e

′′
for all

e, e
′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev are concurrent, e co e

′
iff ¬(e →∗ e

′ ∨e
′ →∗

e ∨ e#e
′
).

From the two relations defined on the set of events, a further relation is
derived, namely the concurrency relation co. As stated, two events are concurrent
if and only if they are completely unrelated, i.e., neither related by causality nor
by conflict.

In our approach to inter-object behaviour specification, we will consider a
restriction of event structures sometimes referred to as discrete event structures.
An event structure is said to be discrete if the set of previous occurrences of an
event in the structure is finite.
1 Conditions have been considered in [2] and are omitted in this paper.
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Discrete Event Structure. Let E = (Ev, →∗, #) be an event structure. E is
a discrete event structure iff for each event e ∈ Ev, the local configuration of e
given by ↓ e = {e′ | e′ →∗ e} is finite.

The finiteness assumption of the so-called local configuration is motivated
by the fact that system computations always have a starting point, which
means that any event in a computation can only have finitely many previous
occurrences.

Consequently, we are able to talk about immediate causality in such struc-
tures. Two events e and e

′
are related by immediate causality if there are no

other event occurrences in between. Formally, if ∀e′′∈Ev(e →∗ e
′′ →∗ e

′ ⇒ (e
′′

=
e ∨ e

′′
= e

′
)) holds. If e →∗ e

′
are related by immediate causality then e is said

to be an immediate predecessor of e
′
and e

′
is said to be an immediate successor

of e. We may write e → e
′

instead of e →∗ e
′

to denote immediate causality.
Furthermore, we also use the notation e →+ e

′
whenever e →∗ e

′
and e = e

′
.

Hereafter, we only consider discrete event structures.

Configuration. Let E = (Ev, →∗, #) be an event structure and C ⊆ Ev. C is
a configuration in E iff it is both (1) conflict free: for all e, e

′ ∈ C, ¬(e#e
′
), and

(2) downwards closed: for any e ∈ C and e
′ ∈ Ev, if e

′ →∗ e then e
′ ∈ C. A

maximal configuration denotes a run. A run is sometimes called life cycle.
Finally, in order to use event structures to provide a denotational semantics

to languages, it is necessary to link the event structures to the language they
are supposed to describe. This is achieved by attaching a labelling function to
the set of events. A generic labelling function is as defined next.

Labelling Function. Let E = (Ev, →∗, #) be an event structure, and L be an
arbitrary set. A labelling function for E is a total function l : Ev → L mapping
each event into an element of the set L.

An event structure together with a labelling function defines a so-called la-
belled event structure.

Labelled Event Structure. Let E = (Ev, →∗, #) be an event structure, L be
a set of labels, and l : Ev → L be a labelling function for E. A labelled event
structure is a pair (E, l : Ev → L).

We will see in Section 4 that when using event structures for modelling se-
quence diagrams in UML 2.0, the labelling function indicates whether an event
represents sending or receiving a message, a condition, the beginning or end of
an interaction fragment.

3.2 Categorical Properties of Event Structures

In this section we describe some categorical properties of event structures. We
assume the reader is familiar with basic categorical constructions.

In order to define a category of event structures, we need a concept of mor-
phism between event structures. Morphisms on event structures have been de-
fined in, for example, [6], as follows.
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Event Structure Morphism. Let Ei = (Evi, →∗
i , #i) for i = 1, 2 be event

structures, and C ⊆ Ev1 an arbitrary subset of events. A morphism from E1 to
E2 consists of a partial function h : Ev1 → Ev2 on events satisfying both (1)
if C is a configuration in E1 then h(C) is a configuration in E2, and (2) for all
e, e

′ ∈ C, if h(e), h(e
′
) are defined and h(e) = h(e

′
) then e = e

′
.

The notion of event structure morphism as given before preserves the concur-
rency relation, as has been proved in [6]. The intuition is that the occurrence of
an event is matched (synchronised) with the occurrence of its image. However,
such a definition (condition (1)) is too strong for our purposes.

Event structures and event structure morphisms as defined above constitute a
category ev presented in [6], among others. This category is known to have both
products and coproducts whereby the first models parallel composition and the
second nondeterministic choice. A coproduct construction is given for instance
in [6]. A product in the category is more tricky and difficult to define in a direct
way. A categorical construction for the product of event structures has been is
given in [7] making use of a new notion of preconfigurations. Alternatively, the
product in ev can be derived from the product of trace languages and the core-
flection from event structures to trace languages [6]. Nevertheless, the category
of event structures ev has both products and equalizers, and is therefore com-
plete (a proof of the later can be found in [8]). Consequently, we know that it
has pullbacks.

By contrast, ev is not cocomplete, because this category does not have co-
equalizers. Consequently, pushouts do not always exist. This is due to the fact
that event structure morphisms may map events in conflict into the same event.
Indeed, injectivity is only assumed on configurations. We require a more rigid
notion of a morphism in order to have coequalizers and consequently pushouts.

Consider the following notion of a so-called communication event structure
morphism.

Communication Event Structure Morphism. Let Ei = (Evi, →∗
i , #i) for

i = 1, 2 be event structures. A communication event structure morphism from
E1 to E2 consists of a total function h : Ev1 → Ev2 on events preserving →+

1
and #1.

Notice that a communication morphism is total instead of partial. Moreover,
injectivity is no longer required over configurations but guaranteed over sequen-
tial substructures as a consequence of the relations being preserved. This makes
the communication morphism notion more rigid than the previous one. However,
configurations do not have to be mapped into configurations. As a communica-
tion morphism preserves →+, a sequential configuration is mapped into a subset
of events contained in a configuration. Recall that →∗ is obtained from the re-
flexive closure of →+. Moreover, preserving →+ instead of →∗ guarantees that
distinct events related by causality are mapped into distinct events related by
causality as well. Finally, a communication morphism preserves conflict but not
necessarily concurrency.

Event structures and communication morphisms constitute a category
cev. Furthermore, this category is complete, has coproducts and, under certain
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conditions, coequalizers. Indeed, cev has coequalizers for two morphisms f, g :
Ev1 → Ev2 provided these morphisms are injective, f(Ev1) ∩ g(Ev1) = ∅ and
for any e1 ∈ Ev1, f(e1) co2 g(e1). Consequently, cev has pushouts under the
same conditions. A detailed analysis on this category can be found in [8].

Finally, let the associated categories for labelled event structures be L(ev)
and L(cev). The category L(ev) has the properties of its underlying category
ev, and is therefore complete but not cocomplete. Similarly, L(cev) is complete,
has coproducts, and coequalizers for a pair of communication morphisms under
the same conditions as the underlying unlabelled category.

3.3 Categorical Construction

From the categories introduced earlier, a well defined categorical construction has
been obtained in [8] to describe synchronous concurrent composition. To simplify
the presentation of the construction we deal with the unlabelled categories ev
and cev instead.

The main idea behind this construction is the following. A product in ev de-
notes parallel composition but is, however, far more than is needed because it
consists of the events of both structures in isolation and all possible synchronisa-
tions. This product does not have much relevance for practical applications in the
sense that we usually want to synchronise some events (according to their labels)
but not all of them. Pullbacks (which exist for ev and L(ev)) may be under-
stood as constrained products. However, here indicated events are synchronised
as desired but remaining events are combined in all possible ways (synchronised
or left in isolation). A pullback in ev gives us the desired model only when both
event structures are to be fully synchronised. By contrast, a coproduct in cev
(and L(cev)) denotes now full concurrent composition. A pushout in the same
category would give us concurrent composition with synchronisation as intended.
However, pushouts only exist under certain conditions and we have to make sure
that we fulfill these conditions to make use of this construct.

Synchronisation Diagram. Let E1 and E2 be two event structures. A syn-
chronisation diagram for E1 and E2 is given by a triple S = (Esynch, f1, f2)
where Esynch is a nonempty event structure, and fi with i ∈ {1, 2} are two
surjective event structure morphisms such that fi : Evi → Evsynch, and satis-
fying f1(Ev1) = f2(Ev2). Moreover, Esynch is called the synchronisation event
structure of E1 and E2.

The synchronisation diagram tells us how the two models relate. If a synchro-
nisation diagram is not definable we say that the models are not composable.
We only consider composable models herein.

Categorical Construction. Let E1 and E2 be two event structures with a
synchronisation diagram given by S = (Esynch, f1, f2) where fi : Evi → Evsynch

for i ∈ {1, 2}. Let E
′

i be the maximal event substructure of Ei such that fi|E′
i

is a total morphism. Then doing the pullbacks in ev and the pushout in cev as
depicted, we obtain the concurrent composition of E1 and E2, written E1×synch

E2, in accordance with the synchronisation diagram S.
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Pullback

Pullback

Pullback

Pushout

E1 E
′
1 E2

M1 M2

E
′
2

ev

cev

E
′
1 ×synch E

′
2

E1 ×synch E2

ev

ev

f1 f2
f1|E′

1
f2|E′

2

Esynch

The interesting aspect of the above construction is that it combines pullbacks
in ev and one final pushout in cev in such a way that the pullbacks are done
over fully synchronised event structures and we always obtain morphisms in cev
satisfying the necessary conditions for the existence of the the final pushout. We
will see in Section 5 how it can be reused for the present purpose.

4 Event Structures for Sequence Diagrams

In [2] we have shown how labelled event structures can be used to provide a
model for sequence diagrams. Here we only provide the general idea.

i j

l2

l5

l0

l1
par

l3

l4

l6

l7

alt

p0

p1

p2

p3

p4

p5

p6

p7

m1

m2

m3

Fig. 4. A case of nested par-alt fragments

Consider the sequence diagram in Fig. 4 showing the interaction between two
instances i and j within nested par-alt fragments. To obtain the corresponding
event structure model, we want to associate events to the locations of the diagram
and determine the relations between those events to reflect the meaning of the
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diagram. The end location of an alt fragment is problematic. If it corresponded
to one event then this event would be in conflict with itself due to the fact
that in a prime event structure conflict propagates over causality. This would,
however, lead to an invalid model since conflict is irreflexive. We are therefore
forced to copy events for locations marking the end of alt fragments, as well
as for all locations that follow. Events associated to locations that fall within
a par fragment are concurrent. Synchronous communication is denoted by a
shared event whereas asynchronous communication is captured by immediate
causality between the send event and receive event. The expected model for the
diagram of Fig. 4 is as shown in Fig. 5, where events ei or ej denote events of
instance i or j respectively. In particular, location lx (px) in Fig. 4 is associated
to event eix (ejx) or several copies eix1 , . . . , eixn (ejx1 , . . . , ejxn). Event e is a

e  i72 j71e  e  j72i71e  

i0

i1

e  i2

#e  

e  i52

i4

e  
i51

e  

e  

#

e  

j0

j1

e  j2

#

e  j52

e  

e  j3

j51

e  

#

#

e

e  j4
e  

i3 #

Fig. 5. A case of nested par-alt fragments - semantic model

shared event denoting synchronisation by message m3. The events ei3 and ei4

are in conflict because they correspond to the execution of alternative operands
(similarly ei3#ej4 , ej3#ei4 and ej3#ej4).

We have mentioned before, that we will use the labelling function of labelled
event structures to indicate whether an event represents sending or receiving a
message, a condition, or the beginning or end of an interaction fragment. We are
not considering conditions in this paper and therefore disregard that case. The
only considered fragments in this paper are alt, par and ref.

Let D be a set of diagram names, Id be the set of instances participating
in the interaction described by d ∈ D, and g denote an unspecified instance or
gate with g ∈ Id for all d ∈ D. Let FD = {d, par, alt, ref(d)} where d ∈ D, and
FD = {d, par, alt, ref(d)}. We use par (or par) as a label of an event associated
to the location marking the beginning (or end) of a par fragment. In particular,
events associated to initial (or end) locations of a diagram d have labels d (or
d). Let Mes be a set of message labels. The labelling function for diagram d is
a total function defined over:
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μd : Ev → Id × (Mes× {s, r} ∪ FD ∪ FD ∪ ref(D)× (Mes× {s, r}))
∪ Id × (Mes ∪ ref(D)×Mes)× Id

The first part of the codomain is used to describe asynchronous messages
(possibly at a referenced fragment) or beginning/end of fragments, whilst the
second part of the codomain deals with synchronous messages (possibly at a
referenced fragment).

For the example of Fig. 5, a few labels are as follows: μ(ei2) = (i, alt) (be-
ginning of an alt), μ(ej2) = (j, alt), μ(ei3) = (i, (m1, s)) (asynchronous send),
μ(ej4) = (j, (m2, r)) (asynchronous receive), μ(e) = (i, m3, j) (synchronisation
between i and j on m3), μ(ei71) = μ(ei72) = (i, par) (end of an alt). The label
of an event associated to a gate location at a referenced fragment is an element
in Id × ref(D) × (Mes × {s, r}). For example, consider the gate location of
message m3 in diagram M in Fig 6. The label of the associated event is given by
μ(e) = (g, ref(n), (m3, r)) where g denotes a gate or unspecified instance.

Finally, for a diagram m ∈ D, a model is a labelled event structure M =
(Em, μm).

5 Modelling Refinement

In this section we show how to model refinement of event structures and con-
sequently give a semantics to sequence diagram decomposition. This is done by
defining an appropriate synchronisation diagram for the categorical construction
introduced earlier. The expected refined model is obtained automatically from
this construction.

Consider Fig. 6 where diagram M has a reference to diagram N. Notice that as
before, each instance has locations along its lifeline, and additionally gates (here
the target of message m3 in M and the source of message m3 in N) have locations
as well.

a b c

sd M

m1

m2

m3 ref
N

b c d

sd N

m3

m4
m6
m7

m5

gate

Fig. 6. Two sequence diagrams in UML 2.0 where M references N

Assume the associated models given in Fig. 7. Notice that in the model for M,
event e (associated to the target location of message m3) is not associated in any
way to the events of instances b and c and is concurrent to these events. The idea
is that only in the refined model concrete relations are introduced. Only events
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(b,ref(n)) (c,ref(n))

(b,(m1,r))

(c,(m2,r))

(c,ref(n))

e

(a,(m1,s))

(b,(m2,s))

(b,ref(n))(a,(m3,s))

(g,ref(n),(m3,r))

(b,n) (c,n)

(b,(m3,r))

(c,(m4,r))

(c,(m5,s))

(c,n)(b,n)

(g,(m3,s))

(b,(m4,s))

(b,(m5,r))

Fig. 7. Model for diagram M (left) and model for diagram N (right)

of instances known to M should be visible in a refined model for this diagram.
This means that we hide all events relating to instance d from the model of N. It
is the restricted model of diagram N that we show on Fig. 7 (right). Nonetheless,
this is not an essential restriction for what follows.

Reference Refinement Diagram. Let m, n ∈ D, M = (Em, μm) be a model
for diagram m, and n be the referenced diagram in m to be refined within M .
Let N = (En, μn) be the model for n. A reference refinement diagram for M
and N is a synchronisation diagram S = (Eref , fm, fn) with fm : Evm → Evref ,
fn : Evn → Evref both surjective and such that for e ∈ Evm and e

′ ∈ Evn,
fm(e) and fn(e

′
) are defined and fm(e) = fn(e

′
) iff one of the following cases

applies:

1. For i ∈ Im ∩ In, μm(e) = (i, ref(n)) and μn(e
′
) = (i, n)

2. For i ∈ Im ∩ In, μm(e) = (i, ref(n)) and μn(e
′
) = (i, n)

3. For i ∈ In and m1 ∈ Mes, μm(e) = (g, ref(n), (m1, c)) with c ∈ {s, r} and
μn(e

′
) = (i, (m1, c))

4. For i ∈ Im, j ∈ In and m1 ∈ Mes, if μm(e) = (i, ref(n), m1, g) and μn(e
′
) =

(g, m1, j) then fm(e) = fn(e
′
)

5. For i ∈ Im, j ∈ In and m1 ∈ Mes, μm(e) = (i, (m1, c)) with c ∈ {s, r} and
μn(e

′
) = (g, (m1, c)) and such that there exist e1 ∈ Evm and e2 ∈ Evn with

μm(e) = (g, ref(n), (m1, c)) and μn(e
′
) = (j, (m1, c)) where c is the converse

of c and (e →m e1 ∧ e
′ →n e2) ∨ (e1 →m e ∧ e2 →n e

′
)

The morphism fm is only defined for events containing ref(n) in their label
(cases 1-4), or events that are in immediate causality (due to asynchronous
communication) with events associated to gate locations on ref(n) (case 5). The
morphism fn is only defined for events associated to initial and final locations
in n or denoting communication with a gate.

The above reference refinement diagram does not take into account that di-
agram m may have a finite number of repeated references (say k) to diagram
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n. In this case, we would consider a synchronisation diagram between M and
R = (Er, μr) =

∐
k(En, μn) where R is the coproduct in L(cev) of k identical

structures.
We can now apply the categorical construction mentioned in Section 3.3 to

the reference refinement diagram above and obtain automatically the expected
refined model. Consider the reference refinement diagram as given in Fig. 8 for
the models of Fig. 7, where fm and fn are defined over the following events

(c,n)

(b,(m3,r))

(c,(m4,r))

(c,(m5,s))

(c,n)(b,n)

(g,(m3,s))

(b,(m4,s))

(b,(m5,r))

e2

(b,ref(n)) (c,ref(n))

(b,(m1,r))

(c,(m2,r))

(c,ref(n))

e1

(a,(m1,s))

(b,(m2,s))

(b,ref(n))(a,(m3,s)) eb3e e

e e
b4

a2

c3

c2

o1 o2
o3 o5

o6o4

Eref

n

(b,n)

e

e e

e

1b

2b

1c

4c5b e

f

N

M

fm

(g,ref(n),(m3,r))

Fig. 8. Reference Refinement Diagram

only: fm(ea2) = fn(e2) = o1, fm(e1) = fn(e2b) = o2, fm(eb3) = fn(e1b) = o3,
fm(ec2) = fn(e1c) = o5, fm(eb4) = fn(e5b) = o4 and fm(ec3) = fn(e4c) = o6.

It is not difficult to see that this is a valid reference refinement diagram: fm

and fn are morphisms in ev and fm(Evm) = fn(Evn).
Given this diagram we apply the categorical construction and obtain the dia-

gram shown in Fig. 9 (for space reasons we cannot show the intermediate steps of
the construction). The refined model contains events from Evm, events from Evn

and pairs of events (e1, e2) where e1 ∈ Evm and e2 ∈ Evn. The pairs of events
correspond to the events synchronised through the reference refinement diagram.
The relations are as expected preserved in the refined model. For the labelling
function, individual events have the same label as before, and for synchronised
events:

μ(e1, e2) =

⎧⎨
⎩

μn(e2)⇐ μn(e2) ∈ {(i, n), (i, n), (i, (m1, s)), (i, (m1, r))}
μm(e1)⇐ μm(e1) ∈ {(i, (m1, s)), (i, (m1, r))}

(i, m1, j)⇐ μm(e1) = (i, ref(n), m1, g) ∧ μn(e2) = (g, m1, j)
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c3

(b,n) (c,n)

(b,(m1,r))

(c,(m2,r))

(a,(m1,s))

(b,(m2,s))

(a,(m3,s))

(b,(m3,r))

(c,(m4,r))

(c,(m5,s))

(c,n)

(g,(m3,s))

(b,(m4,s))

(b,(m5,r))

(ea2,e  )2

2b,e   )
1

(e

1b
,e   )

(b,n)

b3
(e (ec2,e   )1c

5b,e   )(eb4
(e ,e   )4c

Fig. 9. Refined Model for Diagram M

Essentially synchronised events always keep the label of the refinement model
event except in the case where the label of the event in Evn contains an un-
specified gate instance. A further optimisation over this model can be done to
remove (hide) those events labelled (i, n) or (i, n) where i ∈ {b, c}.

Finally, the same approach works for lifeline decomposition (see instance a in
Fig. 2). In this case we generally have a simpler unrefined model in the sense
that there are only events for the gate locations along the lifeline (these events
are concurrent) and at most related by immediate causality with another event
of the unrefined model in case of asynchronous communication.

6 Conclusions

In this paper, we extend the sequence diagram semantics given in [2] to address
refinement, and show how to obtain a refined model by means of a powerful cat-
egorical construction over two categories of labelled event structures. In UML
terminology, we give a semantics to the new interaction decomposition mecha-
nisms aiming at formal reasoning and the verification of complex scenario-based
inter-object behavioural models. In general, the intention of this work is to offer
automatic tools to analyse the properties of a UML model in such a way that
software designers are not concerned with the details of the semantic model, and
the feedback from these tools is reflected again at the UML model.

Existing work providing a trace-based semantics to UML 2.0 sequence di-
agrams includes [9, 10]. Whereas the former does not actually deal with de-
composition, the latter only addresses one kind of decomposition (referencing).
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Similarly, the standard algebraic semantics given to MSCs in [3] does not deal
with decomposition. Our work is therefore, to the best of our knowledge, novel.
A further difference lies in our choice of a true-concurrent semantic model.

We are currently exploring an extension of sequence diagrams and their se-
mantics to allow backtracking of interactions. This is on the one side motivated
by what is already possible in state diagrams, and on the other side by the
idea of reversible interactions as found in biological systems and molecular in-
teractions. Furthermore, it is a natural idea for describing interactions for web
applications where the user may at any moment in time press the “back” and
“forward” buttons of a web browser thus altering the expected interaction be-
tween the user and the application. Semantically, this requires an extension of
our current distributed logic described in [2] to additionally express reversible
behaviour. The main ideas are fundamentally close to the reversible extension
of CCS called RCCS [11].
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Abstract. We address the verification of communication protocols or
distributed systems that can be modeled by Communicating Finite State
Machines (CFSMs), i.e. a set of sequential machines communicating via
unbounded FIFO channels. Unlike recent related works based on ac-
celeration techniques, we propose to apply the Abstract Interpretation
approach to such systems, which consists in using approximated rep-
resentations of sets of configurations. We show that the use of regular
languages together with an extrapolation operator provides a simple and
elegant method for the analysis of CFSMs, which is moreover often as
accurate as acceleration techniques, and in some cases more expressive.
Last, when the system has several queues, our method can be imple-
mented either as an attribute-independent analysis or as a more precise
(but also more costly) attribute-dependent analysis.

1 Introduction

Communicating Finite State Machines (CFSMs) [1, 2] is a simple model to de-
scribe distributed systems exchanging messages over an asynchronous network.
This model consists of finite state processes that exchange messages via un-
bounded FIFO queues. Indeed, unbounded queues provide a useful abstraction
that simplifies the semantics of specification languages, and frees the protocol de-
signer from implementation details related to buffering policies and limitations.
As a consequence, it is used to define the semantics of standardized protocol
specification languages such as SDL and Estelle [3]. Despite its simplicity, the
CFSM model cannot be easily verified: reachability is undecidable for CFSM [1],
since unbounded queues can be used to simulate the tape of a Turing Machine.

Analysis of communicating systems. Two fundamental approaches have been
followed for the analysis of communicating systems in general. One consists of
eliminating the need for analyzing FIFO queues contents by adopting a partial
order semantics or a so-called true concurrency model: when one process sends
a message to another process, one just records the information that the emission
precedes the reception. The seminal work about event structures [4] leads later
to scenario-based models like (High-level) Message Sequence Charts [5, 6] incor-
porated in UML. The second approach, on which this paper focuses, consists in
considering a model with explicit FIFO queues, namely the CFSM model de-
scribed above, and in analyzing their possible contents during the execution of
the system.

M. Johnson and V. Vene (Eds.): AMAST 2006, LNCS 4019, pp. 204–219, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Verification of Communication Protocols 205

The undecidability of the reachability of CFSM [1] does not prevent any ver-
ification attempt, but requires to give up with at least one of the following
properties of an ideal method: an ideal method should indeed be (i) general
(i.e. address any CFSM system), (ii) always terminate, and (iii) deliver exact
results. Two main directions have mainly been explored so far: the first one
abandon property (i) by simplifying the model or considering only a subclass of
it, whereas the second one prefer to abandon property (ii) by looking only for
efficient semi-algorithms that may not terminate but deliver exact results “often
enough”. Lossy channels systems illustrate both directions. They are CFSMs
where the channels can lose messages at any time. Those systems are easier to
verify than perfect channels systems [7]: the reachability problem is decidable,
but there is no effective algorithm to compute the reachability set. However, an
on-the-fly analysis semi-algorithm based on simple regular expressions is given
in [8]. This algorithm can “accelerate” loops, that is, it is able to compute the
effect of any meta transition (loops in the control transition systems). The ter-
mination problem remains because the number of loops is potentially infinite.
This acceleration approach has been generalized to standard CFSMs systems (cf.
section 3), leading to various semi-algorithms applying the acceleration principle
on different representations for queues contents.

We propose here an alternative tradeoff to face the undecidability problem,
which is to keep generality and termination (properties (i) and (ii)) and to give
up with the exactness of the results (property (iii)). When analyzing CFSMs,
this consists in replacing in dataflow equations, sets of FIFO channel configura-
tions by abstract properties belonging to a lattice. Such a transformation results
in conservative approximations: we will be able to prove a safety property, or
the non-reachability of a state, but not to prove that a property is false or that
a state is effectively reachable. The abstractions we propose in this paper are
all based on regular languages, which exhibit among nice properties the closure
under all Boolean operations, and a canonical representation with deterministic
and minimized finite automata.

Contributions. We show in this paper that our abstract-interpretation based
method presents several advantages: it is arguably technically less involving than
acceleration-based techniques, it often returns exact results on cases where the
acceleration techniques terminate, and relevant information in the other cases
where the acceleration techniques do not terminate and do not provide any result,
either because the control structure of the system is too intricate, or because
the reachable set cannot be represented with the chosen representation. Our
method can also be seen as complementary to acceleration techniques when they
fail. Last, although acceleration techniques have been applied to other infinite
datatypes (counters [9], etc), it is not clear whether they can be easily combined,
whereas general methods are available for combining different abstract domains.

Outline. We introduce in section 2 the model of communicating finite state ma-
chines, and the analysis problem we address, namely reachability analysis. We
discuss the related works in section 3. We then explain our approach for the
reachability analysis of CFSMs in the case of one FIFO channel (section 4).
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In section 5 we generalize it to the case of several FIFO channels. We imple-
mented our method and we present in section 6 a few case studies on which we
experimented it, and we compare it with other techniques.

2 Finite Automata and Communicating Finite State
Machines

Finite automata. A finite automaton is a 5-tuple M = (Q, Σ, Q0, Qf , →) where
Q is a finite set of states, Σ a finite alphabet, Q0, Qf ⊆ Q are the sets of initial
and final states, and →⊆ Q×Σ ×Q is the transition relation. The relation →
is extended on words as the smallest relation ⇒⊆ Q × Σ∗ × Q satisfying: (i)
∀q ∈ Q : q

ε⇒ q and (ii) if q
a→ q′ and q′

w⇒ q′′, then q
a·w⇒ q′′.M is deterministic

if Q0 = {q0} and if → defines a function Q×Σ → Q. A word w ∈ Σ∗ is accepted
by M if ∃q0 ∈ Q0, ∃qf ∈ Qf : q0

w⇒ qf . The language L(M) accepted by M is
the set of accepted words. Conversely, given a regular language L ∈ ℘(Σ∗), the
unique (up to isomorphism) minimal deterministic automaton (MDA) accepting
L is denoted byM(L). The set of regular languages on alphabet Σ is denoted by
R(Σ). Given an automaton M = (Q, Σ, Q0, Qf , →) and an equivalence relation
� on its states, M/ � = (Q/ �, Σ, Q̃0, Q̃f , →̃) denotes the quotient automaton
defined in the usual way : the states of M/ � are the equivalence classes of �,
q ∈ Q/ � is an initial (resp. final) state if one state of this equivalence class is an
initial (resp. final) state of M, and (q, a, q′) ∈ →̃ if ∃q ∈ q, ∃q′ ∈ q′, (q, a, q′) ∈→.
For any equivalence relation �, we have L(M) ⊆ L(M/ �).

Definition 1 (CFSM). A Communicating Finite State Machine is given by a
tuple (C, Σ, c0, Δ) where:

– C is a finite set of locations (control states)
– Σ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn is a finite alphabet of messages, where Σi denotes

the alphabet of messages that can be stored in queue i;
– c0 ∈ C is the initial location;
– Δ ⊆ C ×A× C is a finite set of transitions, where A =

⋃
i{i} × {!, ?} ×Σi

is the set of actions. An action can be
• either an output i!m: “the message m is sent through the queue i”;
• or an input i?m: “the message m is received from the queue i”.

In the examples, we define CFSMs in terms of an asynchronous product of finite
state machines (FSMs) reading and writing on queues.

Example 1. The connexion/deconnexion protocol between two machines is the
following (Fig. 1): the client can open a session by sending the message open to
the server. Once a session is open, the client may close it on its own by sending
the message close or on the demand of the server if it receives the message
disconnect. The server can read the request messages open and close, and ask for
a session closure.
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1!open 1!close

2?disconnect

close open

disconnect

0

1

1?open 1?close

2!disconnect
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2?d 1!c
2!d1?c

1!o

1?o

1?o

1!o
(d) Global CFSM: product of client and server processes

Fig. 1. The connexion/deconnexion protocol

Semantics. The semantics of a CFSM (C, Σ, c0, Δ) is given as a labelled transi-
tion system (LTS) 〈Q, Q0, A, →〉 where

– Q = C ×Σ∗
1 × · · · ×Σ∗

n is the set of states;
– Q0 = {〈c0, ε, . . . , ε〉} is the set of the initial states;
– A is the alphabet of actions (cf. Def. 1).
– → is defined by the two rules:

(c1, i!m, c2) ∈ Δ w′
i = wi ·m

〈c1, w1, . . . , wi, . . . , wn〉→ 〈c2, w1, . . . , w
′
i, . . . , wn〉

(c1, i?m, c2) ∈ Δ wi = m.w′
i

〈c1, w1, . . . , wi, . . . , wn〉→ 〈c2, w1, . . . , w
′
i, . . . , wn〉

A global state of a CFSM is thus a tuple 〈c, w1, . . . , wn〉 ∈ C × Σ∗
1 × · · · × Σ∗

n

where c is the current location and wi is a finite word on Σi representing the
content of queue i. At the beginning, all queues are empty, so the initial state
is 〈c0, ε, . . . , ε〉. The reflexive transitive closure →∗ is defined as usual. A state
〈c, w1, . . . , wn〉 is reachable if 〈c0, ε, . . . , ε〉 →∗ 〈c, w1, . . . , wn〉. The reachability
set is the set of all states that are reachable. Computing this set is the purpose of
the reachability analysis. We can achieve this computation by solving a fix-point
equation, as shown in the next paragrah.

Forward collecting semantics and reachability analysis of a CFSM. The forward
collecting semantics defines the semantics of a system in terms of its reachable
set. A set of states X ∈ ℘(Q) = ℘(C ×Σ∗

1 × · · · ×Σ∗
n) can be viewed as a map

X : C → ℘(Σ∗
1 × · · · × Σ∗

n) associating a control state c with a language X(c)
representing all possible contents of the queues when being in the control state
c. The forward semantics of actions �a� : ℘(Σ∗

1 × · · · ×Σ∗
n) → ℘(Σ∗

1 × · · · ×Σ∗
n)

is defined as:

�i!m�(L) = {〈w1, . . . , wi ·m, . . . , wn〉|〈w1, . . . , wi, . . . , wn〉 ∈ L} (1)
�i?m�(L) = {〈w1, . . . , wi, . . . , wn〉|〈w1, . . . , m · wi, . . . , wn〉 ∈ L} (2)
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�i!m� (resp. �i?m�) associates to a set of queues contents the possible queues
contents after the output (resp. the input) of the message m on the queue i,
according to the operational semantics of CFSM. Using the inductive definition
of reachability — a state is reachable either because it is initial, or because it
is the immediate successor of a reachable state —, the reachability set RS is
defined as the least solution of the fixpoint equation

∀c ∈ C, X(c) = Q0(c) ∪
⋃

(c′,a,c)∈Δ

�a�(X(c′)) (3)

where Q0 is the initial set of states. Although there is no general algorithm that
can compute exactly such a reachability set [1], a number of semi-algorithms that
compute the reachability set in some cases have been designed and are described
in the next section.

3 Related Works

Semi-algorithms based on the acceleration paradigm. The acceleration paradigm
is a popular paradigm for infinite state systems, which we describe in the specific
case of CFSM. Eq. (3) is difficult to solve in presence of cycles in the control
graph, because iterative solving using Kleene’s theorem will not converge. Now,
assuming a canonical representation L for queue contents, given a loop θ

�
= c =

c0
a1→ c1

a2→ . . .
ak→ ck = c and a language L ∈ L, we may compute in a single step

the effect of the loop θ, i.e. finding a language �θ∗�(L) ∈ L representing the set
of states that can be reached from a state in L following the loop θ an arbitrary
number of times. Then, when exploring the state space, we can substitute the
entire loop by the single meta-transition θ∗. However, even if each loop may be
accelerated, we still have to explore an infinite transition system since there is
an infinite number of loops. We may exploit some termination conditions [10]
or use heuristics that lead to semi-algorithms: for example, we may “flatten”
the transition system and find a proper exploration order [9]. In the cases of
systems with FIFO channels, this technique has been applied with different kind
of representations, depicted in Tab. 1. Usually only forward analysis has been
studied. Observe that when several channels are involved in a loop, with some
representations, the acceleration is not always possible. [11] provides a detailed
comparison of the cited references.

Algorithms based on transducer iterations. Instead of extrapolating sequences
of values, one may also extrapolate the full relations Li+1 = R(Li) linking two
successive terms, represented as a regular transducer R (in this case, the full
state is encoded as a regular word). The computation of the transducer R∗ allows
the computation of the reachability set. This regular model-checking paradigm
[14] has mainly been applied to networks of finite state machines. A method to
compute the transducer R∗ is given in [15], but will not work for any CFSM.
[16, 17] define extrapolation operators to compute an over-approximation of R∗,
but has experimented them only on one lossy FIFO system [17].
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Table 1. Acceleration techniques on CFSMs

queue representation and typical example attr.a
dependent

acceleration with b

single/several queue ref.

lossy SRE1 :
P

(a + ε) + (a1 + . . . + am)∗ no always / always [8]
perfect SLRE2 :

P
a1a2(b1b2)∗a3(b3)∗(b4)∗ . . . no always / sometimes [11]

perfect QDD3 : n-dim regular expression yes always / sometimes [12]
perfect CQDD4:

P
ap1
1 ap2

2 xq1
1 xq2

2 | p1+2q1 ≤ p2+q2 yes always / always [13]
a yes if one expression for all queues, no if one expression for each queue
b ability to exactly compute the effect of meta-transition
1 Simple Regular Expressions 2 SemiLinear Regular Expressions
3 Queue Decision Diagrams 4 Constrained QDD, using Presburger formulas

Decidable subclasses of CFSMs. Reachability has been shown decidable for
monogeneous [18], linear [19] or half-duplex [20] CFSMs. Allowing the channels
to be lossy makes also the problem decidable [21, 7]. A recent research direction
focuses on probabilisitic lossy channels [22].

Approximated techniques. Besides techniques based on the generation of finite
abstract models that are then model-checked,

abstractions have also been experimented on FIFO queues using the classical
dataflow analysis framework, hence restricting to lattices of properties satisfying
the ascending chain condition (i.e. there is no infinite ascending chain). For
instance, [23] proposes an analysis that infers the emptiness property and the
possible values of the first element to be read in queues. [24] proposes a “widening
operator” for decreasing sequences of regular languages, in the same spirit as [16].
However it does not guarantee the convergence of the sequence.

4 Analyzing Systems with Only One Queue

In this section we consider the simple case of CFSMs with a single FIFO queue,
on which we describe our method based on abstract interpretation [25].

With a single queue, the concrete state-space has the structure C → ℘(Σ∗),
and it will be abstracted by the set C → A, where A is an abstract lattice
equipped with a meaning or concretization function γ : A → ℘(Σ∗) (i.e. γ is
monotone and γ(⊥) = ∅). We will consider for A the set of regular languages
R(Σ) over Σ, with γ : R(Σ) → ℘(Σ∗) being the identity. This simple solution
presents several interesting properties:

– R(Σ) is closed under union, intersection, negation and semantic transform-
ers �!m� (corresp. to concatenation) and �?m� (corresp. to the derivative
operator of [26]). Moreover, Q0 = {〈c0, ε〉} is regular, so that all operators
involved in Eq. (3) can be transposed to R(Σ) without loss of information.

– From a computational point of view, regular languages have as a standard
canonical representation the minimal deterministic automaton (MDA) recog-
nizing them.
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As a consequence, we only have to define a suitable widening operator to ensure
convergence of iterative resolution of Eq. (3). Indeed, the lattice R(Σ) does not
satisfy the ascending chain condition and is even not complete1: it is well-known
that the monotone sequence Ln = {akbk | k ≤ n} converges towards a context-
free language which is not regular.

Generally speaking, a widening operator is a binary operator ∇ : A×A → A
satisfying technical conditions (c.f. proposition 1) that ensure, in the context
of the iterative resolution of a fixpoint equation X = F (X), that the sequence
X0 = F (⊥), Xi+1 = Xi∇F (Xi) converges in a finite number of steps towards
a post-fixpoint of F . In general, a widening operator tries to capture and to
extrapolate the difference between its two arguments Xi and F (Xi), by mak-
ing the hypothesis that the difference will be repeated in the sequence Xi,
F (Xi), F (F (Xi)),. . . . The main difference with acceleration techniques is that
the widening, at least in its basic definition, does not exploit the semantic func-
tion F (which is defined by the analyzed system), but is defined solely on abstract
values. This is both a weakness — it is then more difficult to make a good or
even an exact guess, and a strength — a highly complex function F is not a
difficulty, whereas acceleration-based techniques may fail in such cases (non-flat
systems, nested loops, . . . ).

4.1 Widening Operator

In our case, the choice of ∇ is all the more important as all approximations
performed by the analysis will depend on its application. Because of the FIFO
operations, the widening operator should remain precise for both the begining
and the end of the queue. It also should induce intuitive approximations. In [27],
a widening operator for regular languages was mentioned. We will adapt this
operator to regular languages representing the content of a FIFO channel.

This widening operator will be based on an extensive and idempotent operator
ρk : R(Σ) → R(Σ) (i.e. ρk(X) ⊇ X and ρk ◦ ρk = ρk), where k ∈ N is a para-
meter. ρk will induce a widening operator defined by X1∇kX2 = ρk(X1 ∪X2).
Thus, the proposed widening does not work by extrapolating a difference, but
by simplifying the regular languages generated during the iterative resolution.
The operator ρk is defined on a language L by considering the automatonM(L)
quotiented by a bisimulation up to depth k.

Definition 2 (Bisimulation of depth k). Let (Q, Σ, Q0, Qf , →) be a minimal
deterministic automaton and col : Q → [1..N ] a color function defining an
equivalence relation q1 ≈col q2 ⇔ col(q1) = col(q2). For k ≥ 0, the smallest
bisimulation of depth k finer than ≈col is defined inductively by: ∀q1, q2 ∈ Q,
q1 ≈col

0 q2 iff q1 ≈col q2

q1 ≈col
k+1 q2 iff

⎧⎨
⎩

q1 ≈col
k q2

∀a ∈ Σ, ∀q′1 ∈ Q, q1
a→ q′1 =⇒ ∃q′2 ∈ Q : q2

a→ q′2 ∧ q′1 ≈col
k q′2

∀a ∈ Σ, ∀q′2 ∈ Q, q2
a→ q′2 =⇒ ∃q′1 ∈ Q : q1

a→ q′1 ∧ q′1 ≈col
k q′2

1 It is precisely because A = R(Σ) is not complete that we cannot define an abstraction
function α : ℘(Σ∗) → R(Σ) as it is usually done in abstract interpretation.
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In this section, we consider the standard color function, which uses N = 4 colours
for separating initial and final states from other states:

col(q) = 1 if q ∈ Q0 ∩Qf , 2 if q ∈ Qf \Q0, 3 if q ∈ Q0 \Qf , 4 otherwise (4)

Definition 3 (Operator ρcol
k .). Given a bisimulation relation ≈col

k of depth k
the operator ρcol

k : R(Σ) → R(Σ) is defined by quotienting the MDA of L:

ρcol
k (L) = L(M(L)/ ≈col

k )

ρcol
k is extensive as being defined by a quotient automaton, and it is idempotent

as a consequence of ≈col
k being a bisimulation relation. As ≈col

k+1⊆≈col
k , we also

have ∀L ∈ R(Σ) : ρk+1(L) ⊆ ρk(L). However, ρk is not monotone, as shown by
the following example: a4 ⊆ a4 + a2b, but ρ1(a4) = a3a∗ is not comparable to
ρ1(a4 + a2b) = a4 + a2b.

Definition 4 (Widening operator ∇col
k ). Given an integer k ≥ 0 and a color

function col, we define a binary operator ∇col
k : R(Σ)×R(Σ) → R(Σ):

L1∇col
k L2

�
= ρcol

k (L1 ∪ L2)

Proposition 1. ∇col
k is a widening operator for R(Σ) in the sense of [25]:

1. L1 ∪ L2 ⊆ L1∇col
k L2;

2. For any increasing chain (L0 ⊆ L1 ⊆ . . . ), the increasing chain defined by
L′

0 = L0, L′
i+1 = L′

i∇col
k Li+1 is not strictly increasing (it stabilizes after a

finite number of steps).

This property ensures the global correctness of our analysis [25].

Proof. 1. The language recognized by a quotient automaton is a superset of
the language of the initial automaton. 2. Given a deterministic automaton
(Q, Σ, Q0, Qf , →) and a color function col : Q → [1..N ], we have |Q/ ≈col

k

| ≤ N |Σ|k+1 × 2|Σ|k (proved in [28]). Thus the set {ρcol
k (L) |L ∈ R(Σ)} is

finite.

4.2 Effects of the Widening Operator

We analyze here in detail the effect of the extensive operator ρk on a language,
using the color function of Eq. (4).

Sum of languages: If L = L1 ∪ L2, the widening operator may merge some
subwords of L1 with subwords of L2. For instance, ρ1(aax + bay) = (a +
b)a(x + y); we thus lose the property “ we have an ’a’ at the beginning of
the queue iff we have an ’x’ at the end”.

L = aax + bay ρ1(L) = (a + b)a(x + y)
a a x

b
a

y

a a x

b a y
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Repetition: an important effect of ρk is to introduce Kleene closures in regu-

lar expressions. We have ρk(an) =
ak+2a∗ if k < n− 2
an otherwise : the repetition of a

letter beyond some number is thus abstracted by an unbounded repetition.
The same happens for the repetition of bounded-length words: for n ≥ 3,
ρk((a1 . . . ak)n) = (a1 . . . ak)(a1 . . . ak)∗. If the system allows arbitrarily-long
channel contents, this approximation can guess the limit of the fix-point com-
putation. If a letter is repeated at different places, the two Kleene stars may
be merged: for instance ρ1(ax3bx3c) = ax+(bx+)∗c, instead of the (prefer-
able) ax+bx+c:

L = ax3bx3c ρ1(L) = ax+(bx+)∗c

a x x x b x x x c a
x

x

b

x
c

One can improve the widening for the two previous situations, by considering
a color function col2 which also separates states according to the set of letters
already encountered from the initial states. One has ρcol2

1 (L) = ax+bx+c.
This allows to propagate non-local properties in the FIFO queue.

Suffixes and prefixes: we have the following properties:

Proposition 2. [28] L and ρk(L) have the same set of prefixes of length 1
and the same set of suffixes of length less or equal to k.

Thus, the k last messages written in a queue are not abstracted. As a con-
sequence, we wait enough before trying to capture some regularity with the
operator ρk. Notice than one can improve the result for prefixes by combining
forward with backward bisimulation relations.

Surprisingly, this simple widening has not yet been experimented for the analysis
of CFSMs. Our contribution here is to adapt for FIFO queues the widening
mentioned in [27], by choosing an appropriate color function, and to demonstrate
its practical relevance in this context (c.f. section 6).

4.3 Complexity of the Analysis

The operations we perform on finite automata are polynomial and rather efficient
in practice. The complexity of our analysis depends also on the number of steps
of the fixpoint computation. This number is quite small on the examples of
section 6 (≤ 12, with ρk≤2), but the theoretical bound is exponential in the size
of the alphabet and double-exponential in k. We conjecture than even on larger
examples, the practical complexity remains much below this bound.

5 Systems with Several Queues

We now come back to the general case where several queues are to be analyzed. In
this case, we must choose whereas we analyse each queue independently, using the
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method of the previous section, or we analyse all the queues together. In the first
case, according to the classification of [29], we obtain an attribute-independent
analysis based on a non-relational abstraction, because properties on different
queues are not inter-related. In the second case, we obtain an attribute-dependent
analysis based on a relational abstraction, in which one can represent properties
like “queue 1 contains ’a’ messages iff queue 2 contains ‘b’ messages”. We propose
both solutions.

Concrete representation. In the previous section, a configuration was a word.
Now a configuration is defined by n words w1, . . . , wn which can be represented:

1. as a vector of words 〈w1, . . . , wn〉
2. as a single word w1� . . . �wn obtained by concatenation and the addition of

a separation letter �
3. or as an “interleaved” word w0

1 . . . w0
nw1

1 . . . w1
n . . .

The third representation is used for representing sets of unbounded integer vec-
tors with NDDs [30], but it is not suited to the FIFO operations. We will consider
the two first representations that naturally define two different analyses.

5.1 Non-relational Abstraction

Here we adopt the view of a configuration as a vector of words, and we abstract
each component independently: we take

Anr = R(Σ1)× · · · × R(Σn)

as an abstract lattice, ordered component-wise. The meaning function γnr :
Anr → ℘(Σ∗

1 × · · · ×Σ∗
n) is defined by

γnr (〈L1, . . . , Ln〉) = γ(L1)× · · · × γ(Ln)

The widening ∇k of section 4 is extended to Anr component-wise:
〈L1, . . . , Ln〉∇k〈L′

1, . . . , L
′
n〉 = 〈L1∇kL′

1, . . . , Ln∇kL′
n〉, which defines a proper

widening operator. Sending or receiving a message on the queue i consists in
modifying the component i of the abstract value. In this lattice, the least upper
bound (“the union”) is no longer exact, because of the cartesian product. For ex-
ample, the upper bound of the values 〈a, x〉 and 〈b, y〉 is the language 〈a+b, x+y〉.
Hence, the loss of information is no longer only due to the widening operator.

5.2 Relational Abstraction

If we adopt instead the view of a configuration as a concatenated word, we obtain
the QDD representation of [12], to which we apply the principles of section 4:

Ar = R(Σ ∪ {�}) (5)
γr(X) = {〈w1, . . . , wn〉 ∈ Σ∗

1 × . . .×Σ∗
n | w1� . . . �wn ∈ X} (6)

We implicitly restrict Ar to sets of concatenated words of the form described
above. The only difference with [12] is the use of widening instead of accelera-
tion. This representation allows to represent relations or dependencies between
queues. For instance the language L of Fig. 2 encodes the relation “the queue 1
starts with an ’a’ iff the queue 2 contains an ’x’ ”.
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Order 1 L = aa3�x + ba3�y ρ2(L) = (a + b)a3�(x + y)

a a a a �
x

b a a a �
y

a a a a �
x

b a

�
y

x
�

a
a a a

y
� b

Order 2 L = x�aa3 + y�ba3 ρ2(L) = L

Fig. 2. Widening and ordering of queues in concatenated words

Operations. The union, intersection and inclusion test operations are the natural
extensions of their counterpart for an automaton representing a single queue.
However, we have to adapt the operations �i!m�, �i?m� and ∇k. As each word
recognized by a MDA M = M(L) with L ∈ R(Σ ∪ {�}) is a concatenated
word separated by � letters, each state q ∈ Q of M can be associated to one
queue-content by a function η : Q → [1..n], and can be characterized as initial,
and/or final for this queue [12, 28]. Given such a partition, the operations �i!m�
and �i?m� are easily implemented. Concerning the widening operator, it should
avoid to merge the different queue contents, and preserve the invariant that each
word has n− 1 � letters. We thus adapt the standard color function, which uses
now N = 4n colours:

col(q)=

⎧⎪⎪⎨
⎪⎪⎩

4 ∗ η(q)−3 if q is both an initial and a final state for the queue η(q)
4 ∗ η(q)−2 if q is a final (but not initial) state for the queue η(q)
4 ∗ η(q)−1 if q is an initial (but not final) state for the queue η(q)
4 ∗ η(q) otherwise

(7)
Impact of the ordering. A natural question arises: to which extent is our re-
lational analysis dependent on the chosen ordering for queues ? All the exact
operations, which do not lose information, do not depend on it. However, the
widening is dependent on the ordering of queues, as shown by the example of
Fig. 2. Consequently, our analysis depends on the ordering. A widening operator
which would be independent of the ordering would have been more satisfactory,
but we did not find out yet such a widening operator, with good properties w.r.t.
precision and efficiency (see the discussion in [28]).

6 Experiments and Comparisons

The approach we followed for the analysis was to sacrifice exactness for uni-
versality of the analyzed model and convergence guarantee. Of course such an
approach is relevant only if the approximations introduced are not too strong,
and if they still allow to obtain interesting results. In order to perform this exper-
imental evaluation, we implemented both the non-relational and the relational
abstractions, and we connected them to a generic fixpoint calculator, that takes
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0 1

23

Sender

K!0

L?1

C!m

C!m

L?1

K!1

L?0

L?0

0 1

23

Receiver

K?1

L!1
K?0

C?mC?m

K?1
K?0

L!0

Sender/ Contents
Receiver K#L#C

0/0 1∗#1∗#ε
0/1 ∅
0/2 ∅
0/3 ∅
1/0 1∗0∗#1∗#m
1/1 0∗#1∗#m
1/2 0∗#1∗0∗#ε
1/3 ∅
2/0 ∅
2/1 ∅
2/2 0∗#0∗#ε
2/3 ∅
3/0 1∗#0∗1∗#ε
3/1 ∅
3/2 0∗1∗#0∗#m
3/3 1∗#0∗#m

Fig. 3. The alternating bit protocol

care of the iterative resolution of fixpoint equations and applies widening follow-
ing the principles of [31]. All our experiments used the ∇1 widening operator
based on the standard color function, and returned their result in less than 1
sec. on a 2 GHz IntelTM Pentium computer. The fixpoint was obtained in 7 to
12 iteration steps, depending on the examples.

The Alternating Bit Protocol (ABP) is a data-transmission protocol, between a
sender S and a receiver R. S transmits some data package m through a FIFO
channel C and R and S exchange some information (one-bit messages) through
two channels K and L (Fig. 3). We performed a relational analysis of the CFSM
modeling this protocol (Fig. 3). It shows that some control states are not reach-
able and that there is at most one message in data channel C. As in [12, 32], we
obtain the exact result. Notice that in this case, a simpler non-relational analysis
delivers the same results.

The connexion/deconnexion protocol, defined in Example 1, demonstrates the
usefulness of a relational analysis:

Relational Analysis Non-Relational Analysis
Client/ Queue 1 # Queue 2
Server
0/0 (co)∗(oc)∗#ε + c(oc)∗#d

1/0 (co)∗(oc)∗o#ε + (co)∗#d

0/1 c(oc)∗#ε

1/1 (co)∗#ε

Client/ Queue 1 Q.2
Server
0/0 o∗ + (o∗c)+(ε + o+ + o+c) d∗

1/0 (o∗c)∗o+ d∗

0/1 o∗ + (o∗c)+(ε + o+ + o+c) d∗

1/1 o+ + o∗(co+)+ d∗

The result given by the relational analysis happens to be the exact reachability
set, unlike the non-relational one. The non-relational analysis misses the fact that
there is at most one d in the second queue, which induces many approximations.

A non-regular example. Our abstraction can deal with cases where the reach-
ability set is not regular. Let us consider the CFSM depicted in Fig. 4. Each
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process can send a message a or c, and a synchronisation is guaranteed by the
messages b and d.

0

1 2

1!a

2!b

4?d
0

1 2

2?b

3!c

4!d

Fig. 4. A non-regular protocol

In location (0/0), the content of the
queues will be an�ε�cn�ε with n ≥ 0. This
set is non-regular, and thus cannot be repre-
sented by a regular expression. Our method
will find an over-approximation of the ex-
act reachability set. In location (0/0) the
queue-content we found is represented by
the language :

L(0/0) = ε�ε�ε�ε + a�ε�c�ε + aaa∗�ε�ccc∗�ε

This example shows that our method may give a good over-approximation of a
non-regular reachability set.

A protocol with nested loops is depicted in Fig. 5, which is an abstraction of
systems exchanging frames composed of several packets.

0 1
!start

!end

!a

0
?a

?start

?end
Sender Receiver

Fig. 5. Nested loop

The sender first sends a start message, then
sends any number of a messages and ends the
frame with an end message. The receiver can
read any message at any time.

Our analysis shows that, when the sender
is in location 0, the content of the queue is :

L0 = ε + (s + ε)a∗e(sa∗e)∗

Here the ability of representing regular expressions with nested Kleene closures
is important; in this case we even obtain the exact reachability set.

Comparison with acceleration techniques. In Tab. 2 we compare the techniques
mentioned in Tab. 1 with our non-relational and relational analysis, on the 4
previous examples. We did not consider the method of [8], which assumes lossy
channels.
– yes means that the reachability analysis gives the exact result.
– no means that the reachability analysis does not terminate.
– approx means that the reachability analysis gives an over-approximation of

the reachability set.
The only case where our relational method gives less satisfactory result than
another method, which is also the only case where the result is not exact, is the
Non-Regular protocol. On this protocol, the CQDD method can compute the
exact reachability set

⋃
n≥0 an�ε�cn�ε, whereas we approximate it, using ∇k, by⋃

0≤n≤k+2 an�ε�cn�ε ∪ ak+2a∗�ε�ck+2c∗�ε, which is not so bad. On the other
hand, none of the other methods delivers results for all the examples.

This comparison is experimental, and should be completed in the future with
larger examples. However, it is very difficult to prove the superiority of an analy-
sis that uses a widening operator, as pointed out by [33]. From a theoretical point
of view, we can make two statements. First, we can partially order the expressive-
ness of the representations (which does not necessarily induce a corresponding
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Table 2. Comparison of acceleration techniques with our 2 analysis

Acceleration techniques Regular languages with widening
Example SLRE [11] QDD [12] CQDD [13] non-relational relational

(1) ABP protocol yes yes yes yes yes
(2) Conn./deconn. approxa yes yes approxa yes
(3) Non-regular noa,b,c nob,c yes approxa,c approxc

(4) Nested loops noc yes noc yes yes
a non-relational representation b counting loops [12] that cannot be accelerated
c exact set not representable

ordering of the analyses in terms of accuracy). Following Tab. 1, we have that
SLRE is the less expressive, QDD and our relational method are equivalent, and
are uncomparable to CQDD. Second, proposition 2 implies a (modest) partial
completeness result: if in a CFSM the length of the FIFO queues is bounded by
l, then taking k ≥ n · l for the widening ∇k lead to exact results.

7 Conclusion

In this paper, we showed how to perform reachability analysis of CFSMs using
an Abstract Interpretation approach and the notion of relational/non-relational
analysis [29]. Our method can be applied to any CFSM and always terminates. It
is technically simple, based on standard Abstract Interpretation technique and
well-known concepts like regular languages and bisimulation of depth k. Despite
of its simplicity, that we see as a strength, our method is often as accurate as ac-
celeration techniques on standard examples, and it can deal with counting loops
[12]. It is however unable to certify by itself whether the obtained result is exact
or not (which is a limitation common to abstract interpretation techniques). Last
but not least, we think that our approach is more amenable to the combination
of FIFO channels with other unbounded datatypes, like counters, in the spirit
of [34]. Indeed, it seems very difficult to accelerate loops where FIFO operations
are guarded by numerical tests on counters and where counters are conversely
updated depending on the FIFO queues contents.

For CFSMs, our method is a good alternative to acceleration based techniques.
The two approaches may actually be seen as complementary. Typically, one can
first try to get the exact reachability set using acceleration techniques and then
apply our method in case of failure. A more interesting combination consists
in using acceleration techniques to add meta-transitions in the original model,
when possible, and to apply our method to the augmented system.

In the future we plan to explore two directions: the first one is to combine
the abstraction for FIFO queues with abstractions for numerical variables, in
order to attack the verification of more realistic models. The second one is to
consider CFSM with infinite alphabets. This is required for the many protocols
that use “tokens” to uniquely identify different frames. These tokens are typically
assumed to belong to an infinite set.
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Abstract. Formal modelling languages are powerful tools to systemat-
ically represent and analyze the properties of systems. A myriad of new
modelling languages, as well as extensions of existing ones, are proposed
every year. We may consider that a modelling language is useful if it
allows to represent the critical aspects of systems in an expressive way.
In particular, we require that the modelling language allows to accu-
rately discriminate between correct and incorrect behaviors concerning
critical aspects of the model. In this paper we present a method to as-
sess the suitability of a modelling language to define systems belonging
to a specific domain. Basically, given a system, we consider alternative
correct/incorrect systems and we study whether the representations pro-
vided by the studied modelling language keep the distinction between
correct and incorrect as each alternative system does.

1 Introduction

Hundreds of languages have been proposed to formally describe any kind of
systems. A lot of them differ only in some aspect concerning the way some
features are represented or interpreted (e.g. timed automata [AD94] versus tem-
poral process algebras [NS94] versus timed Petri nets [Zub80], generative versus
reactive probabilistic systems [GSS95], Markovian [Hil96, BG98] versus non-
markovian stochastic models [LN01, BG02], and so on). Since the number of
possible ways to deal with each feature is high, each lineal combination of these
possibilities eventually leads to a new language. Thus, a clear and well-defined
criterion to asses the utility of a language to model systems belonging to some
domain would be very useful. In this line, we could ask ourselves which char-
acteristics we want in a given formal method [AR00]. Informally speaking, a
language is good to model a class of systems if it allows to create models where
critical features are suitably represented. In terms of correction, a model should
be able to perform what the original system does, and should not do what the
system does not. For instance, if a system must perform the action a only if the
variable x is equal to 10 then a model specifying only that a may be performed
would not be accurate enough. Besides, if that action a must be performed only
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after 5 seconds then a model where that requirement is not included would
not be suitable. Following these ideas, a modelling language is suitable to de-
fine a class of systems if it discriminates desirable and undesirable behavior
(almost) as the corresponding modelled systems do. In order to check it, we will
(semi-)automatically compare the behavior of systems and their models. In par-
ticular, we will compare the correct and incorrect behaviors each of them may
expose.

There is a testing technique that can inspire the creation of a new methodology
that actually fits into our purposes. Mutation Testing [Ham77, How82, BM99]
allows to estimate the power of a test suite to assess the (in-)correctness of
an implementation with respect to a specification. Basically, mutation testing
consists in facing tests with several mutants of the specification, that is, alter-
native specifications where some aspect is modified. Mutants are created from
the specification by introducing modifications that simulate typical program-
ming errors. Then, the set of tests to be assessed is applied to each mutant and
we observe the capacity of tests to kill mutants, that is, to detect erroneous
behaviors in mutant specifications that are actually wrong. Let us note that a
mutant could be correct, that is, equivalent to the original specification. Unfor-
tunately, to check the correctness of a mutant is not decidable. So, this technique
is, in general, semi-automatic. Our method, inspired in the previous idea, can be
basically described as follows: Given a real system (defined in some language)
we create some mutants (in the same language) that might behave incorrectly.
Then, we apply the modelling language under assessment to create models of
both the original system and their mutants. If the modelling language were not
expressive enough, then several systems with different behaviors (taken from the
mutant systems and/or the original system) could converge to a single model.
If these systems were either all correct or all incorrect then it would not be a
problem that the modelling language provides a single model for them. This is
so because the conversion might not have lost relevant aspects. However, if some
of the systems that converged to a single model were correct and others were
not then the modelling language is losing relevant characteristics that delimit
the difference between correct and incorrect. Let us note that, in general, no
modelling language allows to express in a natural way exactly the same things
than the language used for the system definition.

Our measure of the expressivity and suitability of a language to define a given
system will be based on the relation between the correctness of the mutants and
the correctness of their corresponding models. For example, let us consider 1000
mutants of a system. Let us suppose that 900 mutants are incorrect with respect
to the system and let us consider the 900 models of these mutants. If 300 of
them are also models of the original system then the modelling language is
not very suitable for defining this class of systems because the modelling phase
loses aspects that are critical to define the border between correct and incorrect.
Other possible unsuitability criterion is the following: If 300 of these models of
incorrect mutants are equivalent to the original system or its model (or more/less
restrictive in a sense that can be considered valid) then the modelling language
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Program P Mutants of P
1: x = 0;
2: while (no message is received) {
3: wait for a random delay M1: 3: wait for a random delay

of [0,2] minutes; of [0.5,1.5] minutes;
4: if (x==1) then { M2: 4: if (x==2) then {
5: send(’A’);
6: x = 0; M3: 6: x = 2; M4: 6: x = 1;
7: }
8: else {
9: x = 1;
10: };
11: };

Fig. 1. Program example

is unsuitable. Since our methodology can be applied to other systems of the
same domain to measure the suitability of the target language to describe them,
it may help to check whether a new language makes a relevant contribution to
express the critical aspects of systems belonging to a specific domain.

The rest of the paper is structured as follows. In the next section we introduce
a simple example to motivate the definition of our methodology. In Section 3
we formally present the main concepts of our methodology. Next, in Section 4
we study some formal properties relating the concepts previously introduced.
Finally, in Section 5 we present our conclusions and some lines for future work.

2 Motivating Example

In this section we illustrate our method with a running example. A program P ,
written in a given language L, is depicted in Figure 1. Until a message is received,
it iteratively performs two operations: First, it waits for a delay between 0 and
2 minutes (we assume that the random variable denoting the delay is uniformly
distributed); next, it sends the message A one out of two times. Let us note that,
from an external observer’s point of view, the behavior of P actually consists in
iteratively sending the message A after random delays between 0 and 4 minutes,
until a message is received from the environment.

In Figure 1 we also give four mutants of P . Each of them differs from P in a
single code line. We will apply the following correctness criterion: A mutant Mi

is correct with respect to P if its external behavior coincides with the one from
P . We suppose that external behavior concerns only sent messages and delays
between them. Since the maximal delay between two consecutive A messages in
M1 is 3, M1 cannot produce some behaviors included in P . So, M1 is incorrect.
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M2 is incorrect as well: For instance, it can wait 10 minutes until a message is
received without sending any message. M3 is correct because its behavior is not
affected by the change. Finally, M4 is incorrect: All the times the loop is taken,
except the first one, we have that X is 1, so an A message is sent. Hence, the
delay between messages A is equal to, at most, 2 minutes, while delays can take
4 minutes in P .

Let us consider three modelling languages L1, L2, and L3. Each of them misses
some aspect that is actually considered in the language L: Only fix temporal
delays can be represented in L1, L2 does not use any variables to govern the
behavior of systems, and L3 cannot represent any temporal delay at all. We will
study and compare the suitability of these languages to model the program P .
In particular, we will study whether each of the languages properly captures the
(subtle) aspects delimiting the border between correct and incorrect behaviors.
In order to do it, each language will face the definition of each mutant of P , and
we will study whether the (in-)correctness of each alternative properly remains
in the models domain provided by each language.

The modelling language L1 represents most program aspects exactly in the
same way as L does. The only difference is that L1 does not allow to represent
random temporal delays. Instead, all temporal delays must denote a determin-
istic amount of time. In particular, the translation of a program from L to L1 is
done as follows: For any random delay we consider its mean expected delay. For
example, line 3 in P is translated into “wait for 1 minute.” As a result, the
models of P and M1 in language L1 actually coincide. Since P is correct but M1
is not, this collision denotes that L1 does not properly represent this behavior.
The collision of two different systems, being one of them correct and the other
incorrect, into a single model, is called collision mistake in our framework (the
formal definition is given in Section 3). Basically, it denotes that some critical
details are lost in translation.

Let us consider the correctness criterion we use in the domain of L and let
us apply it to the domain of L1 models. Despite M1 is an incorrect mutant, its
model in L1 produces exactly the same external behavior as the model of P . In
fact, let us note that the fix delay placed before the if statement is 1 minute long
in both models. That is, the model of M1 is correct with respect to the model of
P , but the system it comes from is not correct with respect to P . We denote the
situation where an incorrect system leads to a correct model, or viceversa, by
model mistake (see Section 3). Basically, it shows that the correctness criterion
is not properly preserved in the model domain.

Regarding the modifications induced by M2, M3, and M4, they are properly
represented in L1. This is because L1 represents all lines but line 3 exactly as L
does. In particular, these mutants do not produce any of the mistakes considered
before. On the one hand, their models differ from each other and from the model
of P , so there do not lead to any collision mistake. On the other hand, models
of incorrect mutants are also incorrect in the domain of models, so they do not
produce model mistakes. In particular, the model of M2 does not produce any
message, and the (fix) delay between messages in the model of M4 is 1 minute.
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However, the fix delay in the model of P is 2 minutes. Finally, since both M3
and its model are correct, M3 does not yield a model mistake. Summarizing, in
both approaches 3 out of 4 mutants do not produce mistakes and are correctly
represented by L1.

We will conclude the presentation of this example at the end of Section 3, once
all the concepts underlying our methodology have been formally introduced. In
particular, we will use L2 and L3 to create models of P and its mutants, and we
will compare the suitability of each language to represent P .

3 Formal Framework

In this section we present the basic concepts of our methodology and show how
they are applied to assess the suitability of a modelling language to describe a
class of systems. First, we introduce the concept of language. In our framework
a language is defined by a syntax, allowing to construct the appropriate words
(i.e., programs), as well as a semantics, associating semantic values to syntactic
expressions.

Definition 1. A language is a pair L = (α, β), where α denotes the syntax
of L and β denotes its semantics. Let Systems(L) denote the set of all words
conforming to α. Then, β is a total function β : Systems(L) −→ B, where B is
the semantic domain for L. ��
Next we present the concept of correctness of a system. Correctness is defined in
the domain of semantic values and it is given in terms of a comparison between
values. So, we may say that a semantic value b1 is correct with respect to b2.
For example, this might mean that both semantic values represent bisimilar
behaviors. The correctness relation is not necessarily symmetric. For example,
it may define a conformance relation where the behavior of a system must be
a subset of that exposed by another. Besides, it could be defined in terms of
the set of semantic values where some required property holds. In general, if c
is a correctness criterion then b ∈ c(b′) means that b is correct with respect to
b′. Let us note that by using this criterion we implicitly define which aspects
of a system will be considered critical. For example, if this criterion says that a
system is correct regardless of its temporal performance, then temporal issues are
not considered critical in our analysis. In the following definition, P(X) denotes
the powerset of the set X .

Definition 2. Let L = (α, β) be a language with β : Systems(L) −→ B. A
correctness criterion for the language L is a total function c : B −→ P(B).

If for all b ∈ B we have b ∈ c(b) then c is a reflexive criterion. If for all b, b′ ∈ B,
b′ ∈ c(b) implies b ∈ c(b′), then c is a symmetric criterion. If for all b, b′, b′′ ∈ B,
b′ ∈ c(b) and b′′ ∈ c(b′) imply b′′ ∈ c(b), then c is a transitive criterion. We say
that a criterion c is an equivalence criterion if it is reflexive, symmetric, and
transitive. ��
According to our methodology, we will create mutants to check whether they
behave as their corresponding models. Thus, we will be able to assess whether
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the modelling language properly discriminates correct and incorrect behaviors.
This will provide us with a measure of its suitability. In order to create mutants
we introduce modifications in the original systems. These modifications substitute
some subexpressions of the system by others. Given a string of symbols and a
substitution, this function returns the set of strings resulting from the application
of the substitution to the string at any point. In the next definition we formally
present this concept. For any set of symbols Σ, we consider that Σ∗ denotes the
set of all finite strings of symbols belonging to Σ.

Definition 3. Let Σ be a set of symbols. Let e = e1 · · · en and e′ = e′1 · · · e′m be
sequences in Σ∗. The term substitution function for e and e′, denoted by [e/e′],
is a function [e/e′] : Σ∗ −→ P(Σ∗) where for any w = w1 · · ·wp we have

[e/e′](w) =
{
w1· · ·wke′1· · ·e′mwk+n+1· · ·wp

∣∣∣∣ 1 ≤ k ≤ p ∧
w = w1· · ·wke1· · ·enwk+n+1· · ·wp

}
��

The creation of mutants will be defined in terms of a function. Given a system
and a set of term substitution functions, this function generates a set of mutants
by applying substitutions of the set to the system.

Definition 4. Let L = (α, β) be a language and S be a set of term substi-
tution functions. A mutation function for L and S is a total function M :
Systems(L) −→ P(Systems(L)), where for any a ∈ Systems(L) and b ∈ M(a)
we have b ∈ σ(a) for some σ ∈ S. ��
From now on we will assume that for any mutation function M for L and any
a ∈ Systems(L) we have a ∈ M(a). This assumption will help to deal with a
system and its mutants in a more compact way.

The translation of a system from the original system language into the mod-
elling language under assessment will be also represented by means of a function.
Let us note that this function, in general, will not be injective: Some systems
with different behaviors could be represented by the same model. Hence, the
modelling language may lose some details. If these details are not considered
critical in the analysis, then losing them is not necessarily bad. On the contrary,
eliminating irrelevant details in models may help to create more handleable mod-
els. However, if the translation into the modelling language loses critical details,
then the modelling language may not be suitable. As we will see below, these
situations will be detected within our framework.

Definition 5. Let L1 = (α1, β1),L2 = (α2, β2) be two languages. A translation
function from L1 to L2 is a total function T : Systems(L1) −→ Systems(L2). ��
Now we are provided with all the needed machinery to present the concepts
used in our methodology. We propose two alternative criteria to check whether
a modelling language is suitable to represent relevant details of systems. Next
we present the first one: If a correct system and an incorrect one (taken from
the set of mutants and the original system) converge to a single model then
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Fig. 2. Correctness Criteria

relevant details concerning the correctness are lost. In particular, the translation
misses details that make the difference between correct and incorrect. Hence,
we say that it is a collision mistake in the representation of the system by the
modelling language. This situation is graphically presented in Figure 2 (left). In
the following definition the cardinal of a set X is denoted by |X | .
Definition 6. Let L1 = (α1, β1),L2 = (α2, β2) be two languages, S be a set of
term substitution functions, and M be a mutation function for L1 and S. Let
T be a translation function from L1 to L2. Let c1 be a correctness criterion for
L1 and s ∈ Systems(L1). We say that m ∈ M(s) is a collision mistake for s,
M , T , and c1, denoted by CMistakes,M,T,c1(m), if there exists m′ ∈M(s), with
T (m) = T (m′), such that either

(a) β1(m) ∈ c1(β1(s)) and β1(m′) ∈ c1(β1(s)) or
(b) β1(m) ∈ c1(β1(s)) and β1(m′) ∈ c1(β1(s)).

In this case, we say that m′ is a collision pair of m for s, M , T , and c1, and
we denote it by m′ !s,M,T,c1 m. The number of collision mistakes of s for
M , T , and c1, denoted by NumCMM,T,c1(s), is defined as | {m | m ∈ M(s) ∧
CMistakes,M,T,c1(m)} | . ��
For the sake of notation simplicity, we will omit some parameters when we as-
sume that they are unique in the context. Hence, we will sometimes simply write
CMistake(m), m′ ! m, and NumCM(s). Next we define our second mechanism to
check whether a modelling language fails to express a system. Now, a correct-
ness criterion will also be applied to the modelling language. For instance, an
equivalence criterion may be used, that is, a reflexive, symmetric, and transitive
criterion. We say that the modelling language produces a model mistake in the
translation of the original system if the correctness criteria of the original lan-
guage and the modelling language map (in-)correct systems in a different way. In
particular, if a correct (resp. incorrect) system is translated into a model that is
considered incorrect (resp. correct), then we detect a failure in the representation
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of the system by the modelling language. This situation is graphically presented
in Figure 2 (right).

Definition 7. Let L1 = (α1, β1),L2 = (α2, β2) be two languages, S be a set
of term substitution functions, M be a mutation function for L1 and S, T be
a translation function from L1 to L2, c1 and c2 be correctness criteria for L1
and L2, respectively, and s ∈ Systems(L1). We say that m ∈ M(s) is a model
mistake for s, M , t, c1, and c2, denoted by MMistakes,M,t,c1,c2(m), if either

(a) β1(m) ∈ c1(β1(s)) and β2(t(m)) ∈ c2(β2(t(s))) or
(b) β1(m) ∈ c1(β1(s)) and β2(t(m)) ∈ c2(β2(t(s))).

The number of model mistakes of s for M , t, c1, and c2, denoted by
NumMMM,t,c1,c2(s), is given by | {m |m ∈ M(s) ∧ MMistakes,M,t,c1,c2(m)} | . ��
Again, we will omit some parameters when they can be inferred from the context.
Now we present mechanisms to find the mistakes in the representation of a
system, regardless of the used criterion. In both cases, we define the suitability
of a modelling language to represent a system as the ratio of mutants that are
correctly translated.

Definition 8. Let L1 = (α1, β1),L2 = (α2, β2) be languages, S be a set of
term substitution functions, M be a mutation function for L1 and S, T be a
translation function from L1 to L2, c1 and c2 be correctness criteria for L1 and
L2, respectively, and s ∈ Systems(L1). The collision suitability of L2 to define s
under M , T , and c1, denoted by CSuit(s,L2, M, T, c1), is defined as

CSuit(s, L2, M, T, c1) =
| M(s) | − NumCM(s)

| M(s) |
The model suitability of L2 to define s under M , T , c1, and c2, denoted by

MSuit(s,L2, M, T, c1, c2), is defined as

MSuit(s, L2, M, T, c1, c2) =
| M(s) | − NumMM(s)

| M(s) | ��
Let us remark that in order to measure collision suitability no correctness crite-
rion is applied to the modelling language L2, that is, c2 is ignored. The previous
concepts can be extended to deal with sets of systems belonging to some specific
domain. Thus, our framework is not only useful to assess the suitability of a
language with respect to a specific system but also with respect to a family of
systems. For instance, we could assess the suitability of a modelling language
to describe data link layer network protocols or distributed cryptographic pro-
tocols. A modelling language unable to represent temporal delays (resp. data
encryption) would produce several collision and/or model mistakes and would
be unsuitable. In each case, a representative set of systems in the domain has
to be chosen and applied. Depending on the relevance of each system and its
fitness in the domain, it should have a different weight in the overall assessment.
In the following definition we overload the functions presented in the previous
definition to deal with sets.
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Definition 9. Let L1 = (α1, β1) and L2 = (α2, β2) be two languages, S be a set
of term substitution functions, and M be a mutation function for L1 and S. Let
T be a translation function from L1 to L2 and c1, c2 be correctness criteria for L1
and L2, respectively. Let S = {(s1, w1), . . . , (sn, wn)} ∈ P(Systems(L1)× (0..1])
be a set of pairs of systems and weights for these systems, where for all 1 ≤ i ≤ n
we have wi > 0 and

∑
1≤i≤n wi = 1. We define the collision suitability of L2 to

define S under M, T , and c1 as

CSuit(S , L2, M, T, c1) =
1≤i≤n

wi · CSuit(si, L2, M, T, c1)

We define the model suitability of L2 to define S under M, T, c1, and c2 as

MSuit(S ,L2, M, T, c1, c2) =
1≤i≤n

wi · MSuit(si, L2, M, T, c1, c2) ��

3.1 Concluding Our Motivating Example

Let us consider the modelling language L2. It represents random delays exactly
as L does, but it considers neither program variables nor their effects. In partic-
ular, it converts any condition on variables into a non-deterministic choice. For
instance, concerning the conditional sentence in line 4 of the program P pre-
sented in Figure 1, the model of P in L2 just denotes that either of the branches
is non-deterministically chosen. In fact, since variables are ignored in L2, the
choice just consists in choosing between sending A or not.

Let us note that the models of the programs P and M1 in L2 do not coincide
because their different versions of line 3 stay in L2. For the same reason, the
model of M1 is different to the model of the correct mutant M3, so there is
no collision mistake with M1. Moreover, there is not a model mistake with M1
either, but the reason is quite different. Let us note that the model of P in L2
can produce any delay between A messages. Since the if choice is implemented
as a non-deterministic choice, the else statement can be taken any number
of times before the next message A is sent. Thus, any delay can be cumulated
before sending each message. However, the model of M1 cannot produce its first
message until 0.5 units of time pass. That is, the model of M1 is not equivalent
to the model of P . Hence, in spite of the collateral effects of the absence of
variables, the (wrong) temporal behavior of M1 is properly detected.

Let us remark that the mutants of M2, M3, and M4 only differ from P in
the way they deal with variables. Hence, the models of M2, M3, and M4 in L2
coincide with the model of P . The collision with the original program is not a
collision mistake for M3, because M3 is actually correct. However, it is so for
the incorrect mutants M2 and M4. Moreover, since these models coincide with
the model of the correct mutant M3, M3 is also involved in a collision mistake.
Regarding the correctness in the model domain, we find the same problem for the
incorrect mutants M2 and M4: The models of M2 and M4 are correct with respect
to the model of P (they have the same external behavior), but the respective
systems M2 and M4 are incorrect with respect to P . On the other hand, since
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the model of M3 is correct, M3 does not produce any model mistake. So, the
number of properly represented mutants with L2 is 1 and 2, for collision and
model mistakes, respectively.

Finally, we consider the modelling language L3. This language does not rep-
resent temporal delays (neither deterministically nor probabilistically), though
variables are represented and used exactly as in L. Since the line 3 is ignored by
L3, P and the incorrect mutant M1 collide by producing the same model in L3,
which in turn is a collision mistake. Besides, since both models coincide, we have
that the model of M1 is equivalent to the model P (though M1 is not equivalent
to P ). Hence, we also have a model mistake (as we will study in Section 4, a
collision mistake between two models induces a model mistake in at least one of
the involved systems).

Regarding M2 and M4, they lead to models that are different to both the
model of P and the model of the correct mutant M3. That is, M2 and M4 do
not induce any collision mistake. The correct mutant M3 does not produce a
collision mistake either. Concerning model mistakes, M2 does not produce them
because its model cannot produce any message at all, which is not equivalent
to the behavior of the model of P . However, the model of the incorrect M4 is
actually equivalent to the model of P . Let us note that, since temporal delays
are not concerned by L3, the external behavior of L3 only reveals the number
of times the message A is sent. Both the model of P and the model of M4 can
send A any number of times. So, they present the same external behavior and
we have a model mistake. Summarizing, if we consider collision mistakes then
3 out of 4 mutants are free of them. However, if model mistakes are concerned
then only 2 out of 4 mutants are properly represented.

In the next tables we compare the performance of each language to define the
program P and its mutants. The first table shows the mistakes of each mutant as
well as the mistakes of P . Obviously, P cannot yield a model mistake (its model is
correct by definition). However, if the model of P coincides with the model of an
incorrect mutant, then P is actually involved in a collision mistake. The second
table, for each kind of mistake, divides the number of mistake-free systems by
the total number of systems (both P and the mutants are considered).

L1 (det. time)
collision m? model m?

L2 (no vars)
collision m? model m?

L3 (no time)
collision m? model m?

P with M1 no with M2, M4 no with M1 no
M1 with P yes no no with P yes
M2 no no with P, M3 yes no no
M3 no no with M2, M4 no no no
M4 no no with P, M3 yes no yes

collision suitability model suitability
L1 0.6 0.8
L2 0.2 0.6
L3 0.6 0.6

If our micro-sample of four mutants were representative of all the kinds of er-
rors that may appear in the system P , then we could conclude that the modelling
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language that provides the best representation accurateness is L1. Similarly, we
can also study sets of systems. If several systems within a given domain, instead
of a single system, are considered then the suitability of a modelling language
to specify some semantical aspects of these systems can be assessed. Let us
note that, in the previous example, we could consider other correctness criteri-
ons (e.g., traces inclusion, bisimulation, conformance, etc). Since each criterion
focuses on different semantical aspects of systems, each would lead to different
suitability results. In the previous example we have considered a straightforward
translation from L to each modelling language. Other more elaborated and pre-
cise translations could be considered. For example, temporal delays of different
length could be simulated in L1 by iterating a tiny delay any non-deterministic
number of times. However, such a translation would produce too complex and
artificial models, which does not fit into the purpose of a model. Hence, trans-
lations must be direct even though details are lost. Finally, let us remind that,
depending on the framework, some operations of our methodology could require
the participation of a human. For example, checking the equivalence of systems
is not decidable if the language is Turing-powerful. The mutant generation func-
tion (which applies randomly generated mutations) and the language translation
mechanism must be defined by a human, though they can be automatically ap-
plied once they are defined.

4 Properties of the Formal Framework

Next we will study the theoretical properties of the concepts presented in the
previous section. In particular, we relate the suitability notions presented in
Definitions 8 and 9 and we study sufficient conditions to guarantee them. The
following results assume the notation criteria introduced in the beginning of
Definition 6, that is, L1 = (α1, β1) and L2 = (α2, β2) are two languages, S is
a set of term substitution functions, and M is a mutation function for L1 and
S. Besides, T is a translation function from L1 to L2, c1 and c2 are correctness
criterions for L1 and L2, respectively, and s ∈ Systems(L1).

First, let us note that the relation of collision pairs (see Definition 6) ! is a
symmetric relation.

Lemma 1. For any m1, m2 ∈ M(s) we have that m1 ! m2 implies m2 ! m1.

Proof. If m1 ! m2 then CMistake(m2) holds, m1, m2 ∈ M(s), and T (m1) =
T (m2). Besides, m1 and m2 fulfill either the case (a) or the case (b) of Defi-
nition 6. In the first case, β1(m2) ∈ c1(β1(s)) and β1(m1) ∈ c1(β1(s)). Since
m1, m2 ∈ M(s), T (m1) = T (m2), and both β1(m1) ∈ c1(β1(s)) and β1(m2) ∈
c1(β1(s)) hold, we conclude m2 ! m1 holds. The proof for the case where (b)
holds is similar. ��
Nevertheless, the relation ! is neither reflexive nor transitive. The next result
relates collision mistakes, represented by the relation !, and model mistakes. If
two mutants produce a collision mistake then at least one of them is a model
mistake.



Assessing the Expressivity of Formal Specification Languages 231

Lemma 2. Let m1, m2 ∈M(s) such that m1 ! m2. Then, either MMistake(m1)
or MMistake(m2).

Proof. If m1 ! m2 then CMistake(m2) holds, m1, m2 ∈ M(s), and T (m1) =
T (m2). Besides, by Lemma 1, we have CMistake(m1).

Let us suppose that case (a) of Definition 6 holds (the proof is similar for the
case where (b) holds). We have β1(m2) ∈ c1(β1(s)) and β1(m1) ∈ c1(β1(s)). Let
us show that if MMistake(m2) is false then we have that MMistake(m1) holds.
If MMistake(m2) does not hold then, by the condition β1(m2) ∈ c1(β1(s)), we
infer that β2(T (m2)) ∈ c2(β2(T (s))) necessarily holds. Since T (m1) = T (m2),
we have that β2(T (m1)) ∈ c2(β2(T (s))) is true as well. Besides, since we also
have that β1(m1) ∈ c1(β1(s)), we deduce that MMistake(m1) holds.

Similarly, we prove that if MMistake(m1) does not hold then MMistake(m2) is
true. If MMistake(m1) is false then β2(T (m1)) ∈ c2(β2(T (s))) because we have
β1(m1) ∈ c1(β1(s)). Since T (m1) = T (m2) and β1(m2) ∈ c1(β1(s)), we conclude
MMistake(m2). ��
The previous result allows to relate incomplete collision suitability with incom-
plete model suitability. If a collision mistake is found while assessing the suit-
ability of a modelling language to represent a set of systems, then the model
suitability for this language and set is not full.

Proposition 1. Let S = {(s1, w1), . . . , (sn, wn)} ∈ P(Systems(L1) × (0..1])
with

∑
1≤i≤n wi = 1 and such that for all 1 ≤ i ≤ n we have wi > 0. Then,

CSuit(S,L2, M, T, c1) < 1 ⇒ MSuit(S,L2, M, T, c1, c2) < 1

Proof. Taking into account that
∑

1≤i≤n wi = 1 and that for all 1 ≤ i ≤
n we have CSuit(si,L2, M, T, c1) ≤ 1, CSuit(S,L2, M, T, c1)<1 implies that
there exists 1 ≤ i ≤ n such that CSuit(si,L2, M, T, c1) < 1. This implies
NumCMM,T,c1(si) ≥ 1. Then, there exist m1 and m2 such that m1 !si,M,T,c1 m2.

By Lemma 2, either MMistakesi,M,T,c1,c2(m1) or MMistakesi,M,T,c1,c2(m2). In
both cases we have NumMMM,T,c1,c2(si) ≥ 1. Thus, we also have that the condition
MSuit(si,L2, M, T, c1, c2) < 1 holds. If we put this disequality together with
the fact that for all 1 ≤ j ≤ n we have MSuit(sj ,L2, M, T, c1, c2) ≤ 1 and∑

1≤j≤n wj = 1, we infer MSuit(S,L2, M, T, c1, c2) < 1. ��
Let us note that the previous implication holds in spite of c2 not being considered
in the left side, that is, it holds for any correctness criterion c2. In the following
result we use collision mistakes to find as many model mistakes as possible.
Since each two mutants involved in a collision mistake induce at least one model
mistake, we will group mutants into pairs of collision mistakes. In order to avoid
that two pairs provide the same model mistake (this could happen if both pairs
share a mutant), we will require that these pairs are disjoint. In this way, each
pair will add up one model mistake. In the following result, # means “number
of.” Besides, graphs are denoted by pairs (V, E) where V is the set of vertices
and E is a set such that each of its elements is a set that is comprised of exactly
two (distinct) vertices. The elements of E are called edges.
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Proposition 2. Let G = (V, E) be a graph with V = M(s) and {m, m′} ∈ E
iff m ! m′. Let us consider the set of graphs

G = {G′ |G′ = (V, E′) ∧ E′ ⊆ E ∧ no path in G′ traverses 3 different nodes}
Let n = max{# connected components with 2 nodes in G′ | G′ ∈ G}. We have
that MSuit(s,L2, M, T, c1, c2) ≤ | M(s) | −n

| M(s) | .

Proof. Let G′ = (V ′, E′) ∈ G be the graph where the number of connected
components of 2 nodes is maximal. For any edge {m, m′} ∈ G′ we have m ! m′.
Due to Lemma 2, we have that either MMistake(m) or MMistake(m′). Hence,
each connected component of 2 nodes in G′ provides a model translation mistake.
Since the sets of nodes of each connected component in G′ are disjoint, mistakes
provided by two components do not coincide. Thus, since NumMM(s) ≥ n, we have
MSuit(s,L2, M, T, c1, c2) ≤ | M(s) | −n

| M(s) | . ��
Next we present a simple sufficient condition to guarantee total collision suitabil-
ity. Intuitively, if the translation function is injective then two mutants cannot
collapse into a single model, so the translation of a correct system and an in-
correct system cannot produce correctness inconsistencies. Hence, the collision
suitability of a modelling language to represent a set of systems is full.

Proposition 3. Let S be defined as in Proposition 1. If T is injective then we
have CSuit(S,L2, M, T, c1) = 1.

Proof. If T is injective then there do not exist distinct m, m′ ∈ M(s)
such that T (m) = T (m′). Thus, for all 1 ≤ i ≤ n we have that there does
not exist m ∈ M(s) with CMistakesi,M,T,c1(m). Thus, for all 1 ≤ i ≤ n
we have NumCMM,T,c1(si) = 0, implying that CSuit(si,L2, M, T, c1) = 1. Since∑

1≤i≤n wi = 1, we conclude that CSuit(S,L2, M, T, c1) = 1. ��
The following condition allows to obtain full model suitability. If the correctness
criterion of the modelling language assesses a model as correct if and only if
this model comes from a correct mutant then we obtain total model suitability.
Moreover, the reverse claim also holds.

Proposition 4. Let S be defined as in Proposition 1. For all 1 ≤ i ≤ n let
c1(β1(si)) = B1i and let c2 be such that c2(β2(t(si))) = B2i, where

(1) If b ∈ B1i then for all m ∈M(si), with β1(m) = b, β2(t(m)) ∈ B2i holds and
(2) If b ∈ B1i then for all m ∈M(si), with β1(m) = b, β2(t(m)) ∈ B2i holds.

Then, MSuit(S,L2, M, t, c1, c2) = 1. The reverse implication is also true.

Proof. We prove the left to right implication. First, let us show that if c2
is defined as above then for all 1 ≤ i ≤ n we have NumMMM,t,c1,c2(si) = 0,
that is, there do not exist 1 ≤ i ≤ n and m′ ∈ M(si) such that we have
MMistakesi,M,t,c1,c2(m′). By contrapositive, suppose that there exists 1 ≤ i ≤ n
such that MMistakesi,M,t,c1,c2(m) for some m ∈ M(si). On the one hand, let us
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suppose that β1(m) ∈ c1(β1(si)) and β2(t(m)) ∈ c2(β2(t(si))). Then, β1(m) ∈
B1i and β2(t(m)) ∈ B2i, which makes a contradiction with the definition of
c2 (condition (1)). On the other hand, if we suppose β1(m) ∈ c1(β1(si)) and
β2(t(m)) ∈ c2(β2(t(si))) then β1(m) ∈ B1i and β2(t(m)) ∈ B2i, which is con-
tradictory with condition (2). Hence, MMistakesi,M,t,c1,c2(m) is not possible for
any 1 ≤ i ≤ n, so NumMMM,t,c1,c2(si) = 0 for all of them. This implies that for
1 ≤ i ≤ n we have MSuit(si,L2, M, t, c1, c2) = 1. Since

∑
1≤i≤n wi = 1, we

conclude MSuit(S,L2, M, t, c1, c2) = 1.
Next we prove the right to left implication. MSuit(S,L2, M, t, c1, c2) = 1 im-

plies that for all 1 ≤ i ≤ n we necessarily have MSuit(si,L2, M, t, c1, c2) = 1,
since for all of them the condition wi > 0 holds and we have

∑
1≤i≤n wi = 1. If

MSuit(si,L2, M, t, c1, c2) = 1 then NumMMM,t,c1,c2(si) = 0. Now we show that if
NumMMM,t,c1,c2(si) = 0 then for all 1 ≤ i ≤ n we have that c2 follows the previous
form. By contrapositive, let us suppose that c2 does not. Then, for some 1 ≤ i ≤
n either (1) or (2) does not hold. On the one hand, let us suppose that there
exist b ∈ B1i and m ∈ M(si), with β1(m) = b, such that β2(t(m)) ∈ B2i. Then,
β1(m) ∈ c1(β1(si)) and β2(t(m)) ∈ c2(β2(t(si))). So, MMistakesi,M,t,c1,c2(m)
and NumMMM,t,c1,c2(si) > 0, which makes a contradiction. On the other hand,
let us suppose that there exist b ∈ B1i and m ∈ M(si), with β1(m) = b, such
that β2(t(m)) ∈ B2i. Then, β1(m) ∈ c1(β1(si)) and β2(t(m)) ∈ c2(β2(t(si))).
Again, MMistakesi,M,t,c1,c2(m) and NumMMM,t,c1,c2(si) > 0, so we also obtain a
contradiction. Hence, for all 1 ≤ i ≤ n we have that c2 fulfills the conditions (1)
and (2). ��
Let us note that it is not always possible to construct such a correctness criterion
c2 as required in the previous result. In particular, if there exist 1 ≤ i ≤ n
and m ∈ M(si) such that CMistakesi,M,t,c1(m) then it will not be possible to
fulfill both conditions. Besides, let us note that, even when it is possible, it is
not desirable to create on purpose a correctness criterion c2 so that complete
suitability is met. On the contrary, the purpose of the correctness criterion is to
assess the suitability, so it must be defined prior to stating the actual class of
systems to be analyzed.

5 Conclusions and Future Work

In this paper we have presented a formal methodology to assess whether a formal
modelling language is suitable to represent the critical aspects of a system or
set of systems. It relies on the idea of creating several alternative systems and
using them to exercise the capabilities of the modelling language to distinguish
correct/incorrect behaviors. Then, by analyzing whether the modelling language
maps correct and incorrect systems as the original language does, we assess the
suitability of the modelling language to model these systems.

As future work we plan to apply our methodology to assess the suitability of
some well-known modelling languages to represent systems belonging to specific
domains. So, our methodology will provide us with an objective and systematic
(while heuristic) criterion to compare modelling languages.
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References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[AR00] E. Astesiano and G. Reggio. Formalism and method. Theoretical Computer
Science, 236(1-2):3–34, 2000.

[BG98] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent
processes with nondeterminism, priorities, probabilities and time. Theoretical
Computer Science, 202:1–54, 1998.

[BG02] M. Bravetti and R. Gorrieri. The theory of interactive generalized semi-
Markov processes. Theoretical Computer Science, 282(1):5–32, 2002.

[BM99] L. Bottaci and E.S. Mresa. Efficiency of mutation operators and selective
mutation strategies: An empirical study. Software Testing, Verification and
Reliability, 9:205–232, 1999.

[GSS95] R. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and
stratified models of probabilistic processes. Information and Computation,
121(1):59–80, 1995.

[Ham77] R.G. Hamlet. Testing programs with the aid of a compiler. IEEE Transac-
tions on Software Engineering, 3:279–290, 1977.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cam-
bridge University Press, 1996.

[How82] W.E. Howden. Weak mutation testing and completeness of test sets. IEEE
Transactions on Software Engineering, 8:371–379, 1982.
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Abstract. Algebraization of computational logics in the theory of fork
algebras has been a research topic for a while. This research allowed us
to interpret classical first-order logic, several propositional monomodal
logics, propositional and first-order dynamic logic, and propositional and
first-order linear temporal logic in the theory of fork algebras.

In this paper we formalize these interpretability results as institution
representations from the institution of the corresponding logics to that
of fork algebra. We also advocate for the institution of fork algebras as a
sufficiently rich universal institution into which institutions meaningful
in software development can be represented.

1 Introduction

Modeling languages such as the Unified Modeling Language (UML) [1] allow us
to model a system through various diagrams. Each diagram provides a view of
the system under development. This view-centric approach to software modeling
has its advantages and disadvantages. Two advantages are clear:

– Decentralization of the modeling process. Several engineers may be modeling
different views of the same system simultaneously.

– Separation of concerns is enforced.

On the other hand, this decentralized process may lead to inconsistencies
among different views, or even between different partial models of the same
view.

At the same time this modeling process evolved, several results were produced
on the interpretability of logics to extensions of the theory of fork algebras [2]. An
interpretation of a logic L to fork algebras consists of a mapping TL : SentL →
EquationsFork satisfying the following interpretability condition:

Γ |=L α ⇐⇒ {TL(γ) : γ ∈ Γ } "fork TL(α) .

Since the language of fork algebras is algebraic, the only predicate is equality.
Therefore, formulas are equations and "fork is equational reasoning in the theory
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of fork algebras (to be introduced later). This makes reasoning in fork algebras
simple.

So far, interpretability results have been produced for classical first-order logic
with equality [2], monomodal logics [3], propositional dynamic logic [3], first-
order dynamic logic [4], propositional linear temporal logic [5] and first-order
linear temporal logic [6].

These results constitute the foundations of the Argentum Project. Argentum
is a CASE tool aimed at the analysis of heterogeneous models of software. A
system description is a collection of theory presentations coming from different
logics, and analysis of the heterogeneous model is achieved by interpreting the
presentations to fork algebras and automatically analyzing the resulting fork-
algebraic specification.

The idea of having heterogeneous specifications and reasoning across them is
not new. A vast amount of work on the subject has been done based on Goguen
and Burstall’s notion of institution [7]. Institutions capture in an abstract way
the model theory of a logic. They can be related by means of different kinds of
mappings such as institution morphisms [7] and institution representations [8].
These mappings between institutions are extensively discussed by Tarlecki in [9].
The main difference between them being that institution morphisms allow one
to build a richer institution from poorer ones, while representations allow us to
encode poorer institutions into a richer one. Tarlecki goes even further when he
writes:

“... this suggests that we should strive at a development of a con-
venient to use proof theory (with support tools!) for a sufficiently rich
“universal” institution, and then reuse it for other institutions linked to
it by institution representations.”

In this paper we pursue this goal by:

1. Introducing the institution of fork algebras.
2. Rephrasing all previous interpretability results, in terms of institution rep-

resentations in the “universal” institution of fork algebras.

Actually, we will go one step further. Using the foundations of General Logics
[8], we provide also an entailment system for fork algebras which happens to be
complete. Notice also that tools supporting automatic analysis of specifications
in the theory of fork algebras, such as ReMo [10], facilitate the search for models
or inconsistencies in specifications. Similarly, the extension of the PVS semi-
automatic theorem prover [11] in order to prove properties in the theory of fork
algebras gives us good theorem proving support.

The paper is organized as follows. In Section 2 we introduce the class of full
closure fork algebras, as well as their proof calculus, from an algebraic per-
spective. In Section 3 we present some necessary definitions from the theory of
institutions. In Section 4 we present the logic of closure fork algebras from an
institutional perspective. In Section 5 we show how theories coming from differ-
ent logics can be effectively merged in the institution of closure fork algebras.
Finally, in Section 6 we draw some conclusions.
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2 Full Closure Fork Algebras

Full Closure Fork Algebras with Urelements (denoted by FCFAU) are extensions
of relation algebras [12], that is, they possess a relation algebra reduct. In order
to introduce this class, we introduce first the class of Pre Proper Closure Fork
Algebras with Urelements (denoted by •PCFAU).

Definition 1. Let U be a nonempty set. A •PCFAU is a two sorted structure〈
2U×U , U,∪,∩, –, ∅, U × U, ◦, Id, ,̆ ∇, �, ∗, 

〉
such that

–  : U × U → U is one to one, but not surjective.
– Id is the identity relation on the set U .
– ∪, ∩ and – stand for set union, intersection and complement relative to

U × U , respectively.
– x� is the set choice operator defined by the condition:

x� ⊆ x and |x�| = 1 ⇐⇒ x = ∅.
– ◦ is relational composition, ˘ is transposition, and ∗ is reflexive-transitive

closure.
– ∇, the fork operator, is defined by the condition

S∇T = { 〈x, y  z〉 : 〈x, y〉 ∈ S ∧ 〈x, z〉 ∈ T } .

Notice that x� denotes an arbitrary pair in x. This is why x� is called a choice
operator. Function  is used to encode pairs. The fact it is not surjective implies
the existence of elements that do not encode pairs. These elements, called urele-
ments, will be used to represent the elements from the carriers of the translated
logics.

Definition 2. We define FCFAU = Rd •PCFAU, where Rd takes reducts to struc-
tures of the form

〈
2U×U ,∪,∩, –, ∅, U × U, ◦, Id, ,̆ ∇, �, ∗

〉
(the sort U and the

function  are forgotten).

We will refer to the carrier of an algebra A ∈ FCFAU as |A|.
The variety generated by FCFAU (the class of Proper Closure Fork Algebras)

has a complete ([4, Theorem 1]) equational calculus (the ω-Calculus for Closure
Fork Algebras with Urelements — ω-CCFAU) to be introduced next. In order to
present the calculus, we provide the grammar for formulas, the axioms of the
calculus, and the proof rules. For the sake of simplifying the notation, we will
denote the relation U ×U by 1, and the relation 1∇1∩ Id by IdU. Relation IdU

is the subset of the identity relation that relates the urelements.

Definition 3. The set of ω-CCFAU terms is the smallest set T satisfying:

– { ∅, 1, Id } ⊆ T ,
– If x, y ∈ T , then { x̆, x∗, x�, x ∪ y, x ∩ y, x◦y, x∇y } ⊆ T .

Definition 4. The set of ω-CCFAU formulas is the set of identities t1 = t2, with
t1, t2 ∈ T .
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Definition 5. The identities described in formulas (1)–(1) are axioms1

of ω-CCFAU.

1. A set of identities axiomatizing the relational calculus [12].
2. The following axioms for the fork operator:

x∇y = (x◦ (Id∇1)) ∩ (y◦ (1∇Id)) ,

(x∇y) ◦(z∇w)˘ = (x◦ z̆) ∩ (y◦w̆) ,

(Id∇1)̆ ∇(1∇Id)̆ ≤ Id.

3. The following axioms for the choice operator [13, p. 324]:

x�◦1◦x̆� ≤ Id, x̆�◦1◦x� ≤ Id, 1◦ (x ∩ x�) ◦1 = 1◦x◦1.

4. The following axioms for the Kleene star:

x∗ = Id ∪ x◦x∗, x∗◦y ≤ y ∪ x∗◦ (y ∩ x◦y) .

5. An axiom forcing a nonempty set of urelements.

1◦IdU◦1 = 1 .

Definition 6. The inference rules for the calculus ω-CCFAU are those of equa-
tional logic (see for instance [14, p. 94]), extended by adding the following infer-
ence rule2:

" Id ≤ y xi ≤ y " xi+1 ≤ y
(∀i ∈ IN)

" x∗ ≤ y

The importance of ∇ is twofold; first its inclusion assures the existence of a
complete calculus with respect to its class of models (i.e. FCFAU) and second,
and most important, it is used to define most of the translations from logical
formulas to relational terms in order to interpret a logic in FCFAU.

Notice that only extralogical symbols belong to an equational or first-order
signature. Symbols such as = in equational logic, or ∨ in first-order logic, have
a meaning that is univoquely determined by the carriers and the interpretation
of the extralogical symbols. Similarly, once the field of a FCFAU has been fixed,
all the operators can be assigned a standard meaning. This gives rise to the
following definition of FCFAU signature.

Definition 7. An FCFAU signature is a set of function symbols {fj}j∈J . Each
function symbol comes equipped with its arity. Notice that since FCFAUs have
only one sort, the arity is a natural number.
1 Since the calculus of relations extends the Boolean calculus, we will denote by ≤

the ordering induced by the Boolean calculus in ω-CCFAU. As it is usual, x ≤ y is a
shorthand for x ∪ y = y.

2 Given i > 0, by xi we denote the relation inductively defined as follows: x1 = x, and
xi+1 = x◦xi.
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The set of FCFAU signatures will be denoted as SignFCFAU. Actually, in order to
interpret the logics mentioned in Section 1, constant relational symbols (rather
than functions in general) suffice. Since new operators may be necessary in or-
der to interpret new logics in the future, signatures will be allowed to contain
functions of arbitrary rank.

In order to extend the definitions of terms (Def. 3) and formulas (Def. 4) to
FCFAU signatures, we need to add the following rule.

– If t1, . . . , tarity(fj) ∈ T , then fj(t1, . . . , tarity(fj)) ∈ T (for all j ∈ J ).

If Σ ∈ SignFCFAU, the set of Σ-terms will be denoted as TermΣ. In the same
way, SenΣ will denote the set of equalities between Σ-terms (i.e. the set of
Σ-formulas).

Definition 8. Let Σ = {fj}j∈J ∈ SignFCFAU, then
〈
P , {f

j
}j∈J

〉
∈ ModΣ iff

P ∈ FCFAU, and f
j

: |P|arity(fj) → |P|, for all j ∈ J .

Definition 9. Given a signature Σ = {fj}j∈J ∈ SignFCFAU, and M =〈
P , {f

j
}j∈J

〉
∈ ModΣ, we denote by mM : TermΣ → |P| the function that

interprets terms in model M .

Definition 10. Let Σ ∈ SignFCFAU, then |=Σ
FCFAU⊆ ModΣ × SenΣ is defined as

follows: M |=Σ
FCFAU t1 = t2 iff mM (t1) = mM (t2).

3 Institutions

Burstall and Goguen introduced in [7] the notion of institution as a general
and abstract description of the model theory of a logic. This semantic path
was then followed by a proof-theoretic approach by Meseguer [8], and Fiadeiro
and A. Sernadas [15]. In this section we present the definition of institution, and
use the notion of entailment system (or π-institution) in order to capture certain
proof theoretical aspects of a logic. These concepts are then related by the notion
of logic [8]. From here on, we assume the reader has a nodding acquaintance with
basic concepts from category theory such as the notions of category, functor,
natural transformation and colimits. The interested reader is directed to [16] for
a gentle introduction to category theory for software engineering.

Definition 11. A quadruple
〈
Sign,Sen,Mod, {|=Σ}Σ∈|Sign|

〉
is an institu-

tion if:

– Sign is a category of signatures,
– Sen : Sign → Set is a functor (let Σ ∈ |Sign|, then Sen(Σ) returns the set

of Σ-sentences),
– Mod : Signop → Cat is a functor (let Σ ∈ |Sign|, then Mod(Σ) returns the

category of Σ-models),
– {|=Σ}Σ∈|Sign| is a family of binary relations |=Σ⊆ |Mod(Σ)| × Sen(Σ)
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and for any signature morphism σ : Σ → Σ′, Σ-sentence φ ∈ Sen(Σ) and
Σ′-model M ′ ∈ |Mod(Σ)| the following |=-invariance condition holds

M ′ |=Σ′
Sen(σ)(φ) iff Mod(σ)(M ′) |=Σ φ .

Definition 12. A triple
〈
Sign,Sen, {"Σ}Σ∈|Sign|

〉
is an entailment system if:

– Sign is a category of signatures,
– Sen : Sign → Set is a functor (let Σ ∈ |Sign|, then Sen(Σ) returns the set

of Σ-sentences),
– {"Σ}Σ∈|Sign| is a family of binary relations "Σ⊆ 2Sen(Σ)×Sen(Σ) such that

for any {Σ, Σ′} ⊆ |Sign|, {φ} ∪ {φi}i∈I ⊆ Sen(Σ), {Γ, Γ ′} ⊆ 2Sen(Σ) the
following conditions are satisfied:
1. reflexivity: {φ} "Σ φ,
2. monotonicity: if Γ "Σ φ and Γ ⊆ Γ ′, then Γ ′ "Σ φ,
3. transitivity: if Γ "Σ φi for all i ∈ I and Γ ∪{φi}i∈I "Σ φ, then Γ "Σ φ,

and
4. "-translation: if Γ "Σ φ, then for any morphism σ : Σ → Σ′ in Sign,

Sen(σ)(Γ ) "Σ′
Sen(σ)(φ).

Definition 13. Let
〈
Sign,Sen, {"Σ}Σ∈|Sign|

〉
be an entailment system. Then,

Th, its category of theories, is a pair 〈O,A〉 such that:

– O is the set of pairs 〈Σ, Γ 〉 with Σ ∈ |Sign| and Γ ⊆ Sen(Σ), and
– A are the theory morphisms, i.e., arrows σ : 〈Σ, Γ 〉 → 〈Σ′, Γ ′〉 in which

σ : Σ → Σ′ is a signature morphism that satisfies the property:

for all γ ∈ Γ, Γ ′ "Σ′
Sen(σ)(γ) .

Definition 14. A quintuple
〈
Sign,Sen,Mod, {"Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|

〉
is a

logic if:

–
〈
Sign,Sen, {"Σ}Σ∈|Sign|

〉
is an entailment system,

–
〈
Sign,Sen,Mod, {|=Σ}Σ∈|Sign|

〉
is an institution, and

– the following soundness condition is satisfied: for any Σ ∈ |Sign|, φ ∈
Sen(Σ), Γ ⊆ Sen(Σ), Γ "Σ φ =⇒ Γ |=Σ φ.

A logic is complete if in addition the following condition is also satisfied: for
any Σ ∈ |Sign|, φ ∈ Sen(Σ), Γ ⊆ Sen(Σ), Γ |=Σ φ =⇒ Γ "Σ φ.

4 The Logic Behind Closure Fork Algebras

In this section we will show how to build a logic (in the sense of Def. 14) on top of
closure fork algebras. Since the variety generated by FCFAU is completely char-
acterized by the ω-CCFAU equational calculus, we might consider to relativize
the institution (entailment system) of equational logic rather than introducing a
new one from scratch. This might work for a while, but there are technical and
methodological reasons for presenting the explicit construction.
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On the technical side, notice that the actual proof systems for equational logic
and ω-CCFAU differ in their proof rules (ω-CCFAU has an extra rule – c.f. Def. 6).
This prevents us from modeling the proof calculus [8, Def. 12] ω-CCFAU as a proof
subcalculus [8, Def. 14] of equational logic. From the methodological point of
view, the categorical construction provides important information to the reader
on what operations are part of the logic, how morphisms are defined, etc.

4.1 The Institution Behind Closure Fork Algebras

In this section we will define an institution on top of FCFAU. The section is
structured following the order of requirements stated in Def. 11.

Once the definitions for SignFCFAU, SenFCFAU or ModFCFAU are precisely stated,
proving that indeed SignFCFAU is a category, or that SenFCFAU and ModFCFAU are
functors between appropriate categories becomes a simple exercise in category
theory (and is therefore left to be proved by the reader). Here lies the beauty
of the institution of closure fork algebras. It is a simple, yet very expressive
institution, and therefore an appropriate candidate for a “universal” institution.

Lemma 1. We define SignFCFAU = 〈O,A〉, where O = SignFCFAU, and σ :
{fi}i∈I → {gj}j∈J ∈ A whenever σ is an arity preserving total function. Then,
SignFCFAU is a category.

The intuitive meaning is that an arrow σ : Σ → Σ′ is a translation of Σ-symbols
to Σ′-symbols. Since the fork algebra operators are not in the signatures, these
cannot be translated.

Definition 15. Let Σ ∈ |SignFCFAU|, then TermFCFAU(Σ) = TermΣ.

Let σ : Σ → Σ′ be a FCFAU signature morphism, then σterm is the homomorphic
extension of σ to terms of the set TermFCFAU(Σ). Function σterm translates terms
according to the translation of basic symbols induced by σ.

Definition 16. Let Σ ∈ |SignFCFAU|, then SenFCFAU(Σ) = SenΣ.

Given a signature morphism σ, function σeq translates FCFAU sentences accord-
ing to σ. It is defined by the condition

σeq(t1 = t2)
def
= σterm(t1) = σterm(t2) .

Lemma 2. Let σ : Σ → Σ′ be a SignFCFAU morphism, then SenFCFAU :
SignFCFAU → Set defined as SenFCFAU(σ)(S) = { σeq(s) : s ∈ S } is a functor.

Lemma 3. Let Σ ∈ |SignFCFAU|, then ModFCFAU(Σ) = 〈OΣ ,AΣ 〉, where

– OΣ = ModΣ, AΣ = {γ : M → M ′ : γ is a FCFAU homomorphism},
is a category.
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The next definition characterizes the action of ModFCFAU on morphisms in
SignFCFAU. Morphisms σ : Σ → Σ′ in SignFCFAU are translations from Σ-symbols
to Σ′-symbols. Since ModFCFAU must be contravariant, we will define it as the
operation that from Σ′-algebras takes reducts to the signature of Σ-algebras.

Definition 17. Let Σ = {fi}i∈I and Σ′ = {gj}j∈J be FCFAU signatures.

Let σ : Σ → Σ′ be a SignFCFAU morphism. Let M ′ =
〈
P , {g

j
}j∈J

〉
∈

|ModFCFAU(Σ′)|. Then, M ′ �σ=
〈
P , (f

i
)i∈I

〉
, where f

i
= σ(fi).

Lemma 4. Let σ : Σ → Σ′ be a SignFCFAU morphism. Then, ModFCFAU(σ) :
ModFCFAU(Σ′) → ModFCFAU(Σ) defined by

ModFCFAU(σ)(M ′) = M ′ �σ, ModFCFAU(σ)(γ′) = γ′,

is a functor.

Lemma 5. ModFCFAU : SignFCFAU
op → Cat is a functor.

Proof. The proof immediately follows from Lemmas 3 and 4.

Lemma 6. Let σ : Σ → Σ′ be a SignFCFAU morphism. Let t1 = t2 ∈
SenFCFAU(Σ). Let M ′ ∈ |ModFCFAU(Σ′)|. Then,

ModFCFAU(σ)(M ′) |=Σ
FCFAU t1 = t2

iff M ′ |=Σ′

FCFAU SenFCFAU(σ)(t1 = t2) .

Theorem 1. The structure〈
SignFCFAU,SenFCFAU,ModFCFAU, {|=Σ

FCFAU}Σ∈|SignFCFAU|
〉

is an institution.

Proof. The proof follows by Lemmas 1, 2, 5 and 6.

The institution of the closure fork algebras is denoted by IFCFAU.

4.2 The Entailment System Behind Closure Fork Algebras

In this section we use a standard model theoretic construction [8, Prop. 4] in
order to build a candidate entailment system. This entailment system, though it
defines an entailment relation, does not guarantee the existence of axioms and
proof rules implementing the deduction relation. We will address this issue again
in Section 4.3.

Definition 18. Let Σ ∈ |SignFCFAU|. Let Γ ⊆ SenFCFAU(Σ). We define the
category ModFCFAU(Σ, Γ ) as the full subcategory of ModFCFAU(Σ) determined
by those models M ∈ |ModFCFAU(Σ)| that satisfy all the sentences in Γ , i.e.,
M |=Σ

FCFAU φ for each φ ∈ Γ .
We also define a relation between sets of sentences and sentences 
Σ

FCFAU, as
follows:

Γ 
Σ
FCFAU φ iff M |=Σ

FCFAU φ for each M ∈ |ModFCFAU(Σ, Γ )| .
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Since SignFCFAU is a category, and SenFCFAU is a functor. In [8, Prop. 4] it is
proved that for each Σ ∈ |SignFCFAU|, 
Σ

FCFAU satisfies the conditions presented
in Def. 12. Thus, the following theorem holds.

Theorem 2. The structure〈
SignFCFAU,SenFCFAU, {
Σ

FCFAU}Σ∈|SignFCFAU|
〉

is an entailment system.

The entailment system of closure fork algebras is denoted by I+
FCFAU.

4.3 The Logic Behind Closure Fork Algebras

Notice that since by definition the relation 
Σ
FCFAU is sound and complete with

respect to |=Σ
FCFAU, from Thms. 1 and 2, the following theorem holds.

Theorem 3. (IFCFAU and I+
FCFAU form a logic)

The structure

SignFCFAU, SenFCFAU,ModFCFAU, {
Σ
FCFAU}Σ∈|SignFCFAU|, {|=Σ

FCFAU}Σ∈|SignFCFAU|

is a logic.

The logic associated to closure fork algebras will be denoted by LFCFAU.
Having proved the existence of a sound and complete entailment relation


Σ
FCFAU in the way we did, is of little interest. The entailment relation does not

give any hints as to how to deduce properties, what would be the axioms, or
what are the proof rules employed in order to generate the relation. Actually,
it might be the case that no deduction mechanism is available. Fortunately, as
the following theorem shows, this is not the case when working with closure fork
algebras.

Theorem 4. Let "Σ
FCFAU⊆ 2SenFCFAU(Σ)×SenFCFAU(Σ) be the entailment relation

induced by the calculus ω-CCFAU. That is, Θ "Σ
FCFAU φ iff there is a proof of φ

from the set of hypotheses Θ. Then, for all Σ ∈ |SignFCFAU|, "Σ
FCFAU = 
Σ

FCFAU.

5 Reasoning Across Logics in Closure Fork Algebras

Once the logic behind FCFAU has been developed, it is possible to review the
existing interpretability results in the light of the theory of institutions and
institution representations [9]. Moreover, we will present a general technique for
building a unique homogeneous theory from heterogeneous ones.

In general, if L is a logic and ΣL an L-signature, an interpretability result of
L in FCFAU is generally presented by resorting to:

– A mapping S from ΣL to Σ ∈ |SignFCFAU|.
– A translation TL→FCFAU of ΣL-formulas to Σ-equations.
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– A mapping of ΣL-models to Σ-models (full closure fork algebras), satisfying:

∀A ∈ FCFAU, ∃BA ∈ |ModL(ΣL)|
BA |=ΣL

L α ⇐⇒ A |=Σ
FCFAU TL→FCFAU(α) .

– A mapping of Σ-models (full closure fork algebras) to ΣL-models, satisfying:

∀B ∈ |ModL(ΣL)|, ∃AB ∈ FCFAU

B |=ΣL
L α ⇐⇒ AB |=Σ

FCFAU TL→FCFAU(α) .

We introduce next institution representations.

Definition 19. Given institutions I =
〈
Sign,Sen,Mod, {|=Σ}Σ∈|Sign|

〉
and

I ′ =
〈

Sign′,Sen′,Mod′, {|=Σ′}Σ∈|Sign′|

〉
, an institution representation ρ : I →

I ′ consists of a functor ρsign : Sign → Sign′, a natural transformation ρsen :
Sen =⇒ ρsign;Sen′ and a natural transformation ρmod : (ρsign)op;Mod′ =⇒
Mod such that for each σ ∈ |Sign|, φ ∈ Sen(Σ), and M ′ ∈ |Mod(ρsign(Σ))|
the following property holds:

M ′ |=ρsign(Σ) ρsen
Σ (φ) iff ρmod

Σ (M ′) |=Σ φ .

Notice that the mappings necessary in order to build a representation between
institutions can all be trivially obtained from an algebraic interpretation of a
logic to closure fork algebras.

Suppose S is a system whose models allow us to retrieve temporal properties
(formalized as a linear temporal logic theory ThLTL

S =
〈
ΣLTL

S , ΓLTL
〉
), and dy-

namic properties (formalized as a propositional dynamic logic theory ThPDL
S =〈

ΣPDL
S , ΓPDL

〉
). Using institution representations ρLTL→FCFAU : ILTL → IFCFAU and

ρPDL→FCFAU : IPDL → IFCFAU allows us to get new theories that live in the same
algebraic world:

ρLTL→PCFA(ThLTL
S )

�ρLTL→PCFA

ThLTL
S

ρPDL→PCFA(ThPDL
S )

�ρPDL→PCFA

ThPDL
S

It is easy to prove that the category ThFCFAU is finitely cocomplete, that is, for
any finite diagram γ : I → ThFCFAU there exists a colimit of γ (i.e. there exists
T ∈ |ThFCFAU| and a commutative cocone with base γ and vertex T ).

Notice that if in a diagram we have T1
σ1→ T2

σ2→ T3, (T1, T2, T3, theories and
σ1, σ2 theory morphisms) and σ1(f1) = f2, σ2(f2) = f3, then symbols f1, f2 and
f3 will be mapped to the same symbol in the colimit.

Using this colimit construction we can compute a FCFAU-theory specifying the
whole system. Notice that this theory only equates those symbols that are glued
by morphisms from the diagram. A different situation arises when the developer
wishes to equate symbols from theories T1 and T2 due to system design decisions.
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It is seldom the case that T1 and T2 will be related by signature morphisms. In
[17], Fiadeiro presented, as a tool to solve this synchronization problem, the
specification of channels. Channels are theories that only contain symbols with
no particular behavior (no axioms for the symbols are given). Let us illustrate
with an example how channels work. Let {Pi}i∈I ∈ ΣLTL

S and {P ′
i}i∈I ∈ ΣPDL

S

be proposition symbols. Let us assume they were aimed to represent the same
predicates, pairwise (that is, Pi = P ′

i for all i ∈ I). The idea is to create a new
theory 〈{Pi}i∈I , ∅〉 and theory morphisms σLTL (mapping Pi to Pi) and σPDL

(mapping Pi to P ′
i ). Then, the symbols Pi and P ′

i are adequately equated in
the colimit. Unfortunately, this construction is flawed because theories ThLTL

S

and ThPDL
S live in different institutions. Fixing this is trivial by introducing

a FCFAU theory channel between the representations of the theories, as the
following diagram shows:

ρLTL→FCFAU(ThLTL
S )

�ρLTL→FCFAU

ThLTL
S

� σLTL 〈 (Pi)i∈I , ∅ 〉 �σPDL
ρPDL→FCFAU(ThPDL

S )

�ρPDL→FCFAU

ThPDL
S

�
δPDL

〈Σ, Γ 〉

�
δsync

�
δLTL

We have successfully equated the proposition symbols. Still there is a major
gap between the theories. In effect, the accessibility relation T induced by the
LTL theory is unrelated with the actions {Aj}j∈J in the PDL theory. Notice that
it is a very natural decision in the software development process to use PDL for
specifying atomic actions and LTL to prescribe the admissible evolutions of the
system. Therefore, the relationship T =

⋃
j∈J Aj should hold. Since T is not

a symbol in the signature of LTL theories (it appears in the semantics of the
logic), a construction along the lines of the channel construction does not seem
to work.

Fortunately, the representation of LTL to IFCFAU (see [5] for the mapping of
LTL formulas to closure fork algebras) includes symbol T in signatures, and
therefore a construction as the one provided in the following picture, including
a theory whose only axiom is T =

⋃
j∈J Aj , does the job.

ρLTL→FCFAU(ThLTL
S )

�ρLTL→FCFAU

ThLTL
S

�σLTL 〈 {Pi}i∈I , T, {Aj}j∈J , ∅ 〉 �σPDL

�
σFCFAU

ρPDL→FCFAU(ThPDL
S )

�ρPDL→FCFAU

ThPDL
S

T, {Aj}j∈J , {T = j∈J Aj}

〈 Σ, Γ 〉

�

δLTL

�

δsync

�
δFCFAU

�
δPDL
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At this point, questions about conservation of properties of the partial spec-
ifications might arise. Since equational logic is monotonic, theorems from the
particular theories are preserved. Nevertheless, new properties may emerge in
the combined theory as a result of the interaction between the properties of the
intervening theories.

6 Conclusions

Relations are ubiquitous in logics with applications in software technology. Either
in the form of predicates in classical first order logic, as actions in dynamic logic,
or as accessibility relations in modal logics, they are everywhere. Therefore, the
election of a relational framework to represent logics is fully justified. Many logics
have already been interpreted in the theory of closure fork algebras. Reasoning
across these logics then becomes feasible by resorting to relational tools. The
relational algebraic approach departs from the mainstream work on reasoning
across formalisms carried on in the institutional framework. In this paper we
have related both approaches and have shown that closure fork algebras are a
suitable candidate as a universal logic. The example we have discussed on the
relationship between dynamic and temporal theories shows how easy it is to
introduce meaningful relationships among theories coming from different logics.
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Abstract. Synthesizing a proper implementation for a scenario-based
specification is often impossible, due to the distributed nature of imple-
mentations. To be able to detect problematic specifications, realizability
criteria have been identified, such as non-local choice.

In this work we develop a formal framework to study realizability
of compositional MSC [GMP03]. We use it to derive a complete clas-
sification of criteria that is closely related to the criteria for MSC from
[MGR05]. Comparing specifications and implementations is usually com-
plicated, because different formalisms are used. We treat both of them
in terms of a single formalism. Therefore we extend the partial order
semantics of [Pra86, KL98] with a way to model deadlocks and with a
more sophisticated way to address communication.

1 Introduction

For scenario-based specifications of distributed systems (e.g. in terms of Message
Sequence Chart, MSC), it is often impossible to synthesize an implementation
with exactly the same behavior. This is caused by the distributed nature of im-
plementations. The best-known phenomenon leading to problems is non-local
choice [BAL97], but also other criteria [HJ00, Gen05, MGR05] have been pro-
posed to determine realizability of specifications in practice [MG05]. In this work
we develop a formal framework to study such criteria for the MSC extension that
is called compositional MSC [GMP03, MM01]. Our work differs from [AEY05],
which studies decidability and worst-case complexity of checking whether an
MSC specification is realizable, but provides no practical criteria.

Most realizability criteria seem to be tricky formalizations of intuitions about
realizability. In contrast, we formally study under what circumstances specifica-
tions are trace equivalent to their implementations, and derive a condition that
is both necessary and sufficient. From this condition, we derive a complete clas-
sification of realizability criteria for compositional MSC. The resulting formal
criteria can easily be related to our intuitive criteria in [MGR05].

Several kinds of semantics have been proposed for MSC specifications (e.g.
[KL98, Ren99, Hey00, UKM03]), while implementations are typically expressed
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Fig. 1. Running example

in terms of finite state machines. To compare specifications and implementations,
two different formalisms must then be related, usually via execution traces (in
fact a third formalism). We prefer to use one single formalism for both implemen-
tations and specifications, and we want to stay close to the MSC specification
formalism. Therefore we use a partial order semantics [Pra86] for our study, and
sketch the relation with operational formalisms. In addition to the partial order
model in [Pra86, KL98], we introduce a way to model deadlocks and a more
sophisticated way to deal with communication.

Overview In Section 2 we introduce our partial order model, which we extend
with communication in Section 3. These two sections are rather independent
from MSC, but they are the basis of the semantics of compositional MSC in Sec-
tion 4. In Section 5 we define the typical way of synthesizing an implementation;
trace equivalence between specifications and such implementations is studied
in Section 6. Finally in Section 7 we classify various realizability criteria. The
conclusions and further work are presented in Section 8.

2 Extended Partial Order Model

In this section we define a partial order model and extend it with deadlocks, to
make it suitable for studying realizability criteria.

2.1 Running Example

We illustrate our techniques using a running example.
Figure 1 contains a (high-level) MSC consisting of the three basic MSCs ex1,

ex2 and ex3. It specifies the behavior of process instances X and Y , such that
first the behavior of ex1 occurs, followed by either the behavior of ex2 or the
behavior of ex3. For reference purposes we have included arbitrary event names
(e1 to e13) in the basic MSCs.

2.2 LATERs: LAbeled Transitive Event Relations

As a semantic model of behavior, we introduce the notion of a later, which is an
acronym for labelled transitive event relation. A later (E, <, l) is a triple that
consists of an event set E, a transitive causality relation <: < ⊆ E × E and a
labeling function l : E → L for a given set of labels L. The behavior of a later
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is such that any event e : e ∈ E models a single action with label l.e; the event
can occur at most once and it may only occur after all events f : f < e have
already occurred. Compared to the partial orders in [Pra86], a later is an lposet
in which the partial order constraint has been weakened.

In our running example, let laters p1, p2 and p3 correspond to the basic MSCs
ex1, ex2 and ex3, such that only the causalities per instance (on each vertical
axis) are considered, i.e. without communication. So, p1 = ({e1, e2, e3}, {e2 <
e3}, l1) and as we will see later on l1 = {e1 #→!(a, X, Y ), e2 #→?(a, X, Y ), e3 #→
!(b, Y, X)}. The structure of p1 can be visualized as e1 e2 e3 such
that relation < corresponds to the transitive closure of relation →. In an inter-
leaved execution model where the events are labeled with atomic actions, the
maximal behaviors of a partially ordered later are its linearizations; in this ex-
ample: e1 · e2 · e3, e2 · e1 · e3 and e2 · e3 · e1. Each linearization represents an
execution trace, i.e. a sequence of action labels. We prefer to reason about par-
tial orders, because they are better related to MSC and they avoid decomposing
each partial order into several over-specific total orders. Another advantage is
that true concurrency can be modeled.

The most elementary laters are the empty later, with no events, and the
singleton laters, with only one event with a label k : k ∈ L. We introduce the
following abbreviations for them:

[ε] = (∅, ∅, ∅)
[k] = ({e}, ∅, {[e #→ k]}) for k : k ∈ L and arbitrary e

2.3 Isomorphism

The event set of a later is abstract in the sense that a consistent renaming of
the events yields a later with the same behavior. This is formalized in the fol-
lowing notion of isomorphism. Laters (E, <, l) and (E′, <′, l′) are isomorphic,
denoted (E, <, l) � (E′, <′, l′), if there is a bijection ∼: ∼ ⊆ E × E′ such that
both

– (∀e, e′ :: e ∼ e′ ⇒ l.e = l′.e′)
– (∀e, f, e′, f ′ :: e ∼ e′ ∧ f ∼ f ′ ⇒ (e < f ≡ e′ <′ f ′))

Relation � is an equivalence relation. In what follows we will hardly mention �
explicitly, and implicitly assume that where necessary � has been exploited to
obtain suitable laters, e.g. ones that are event disjoint.

2.4 Elementary Later Operators

We often need to relate events to the instance (i.e. computational unit or process)
in which they occur. We assume a fixed set of instance names I, and a function1

φ : L → I that maps labels to the instance in which the actions with that label

1 For a later (E, <, l), [HJ00] uses the slightly different function φ′ : E → I , which
can be obtained from our later-independent φ as follows: φ′.e = φ.(l.e) .
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occur. To construct larger laters from the elementary laters, we use the following
elementary operators on event disjoint laters (i.e. Ep ∩ Eq = ∅):

(Ep, <p, lp) ‖ (Eq, <q, lq) = (Ep ∪ Eq, <p ∪ <q, lp ∪ lq)

(Ep, <p, lp) ◦S (Eq, <q, lq) = (Ep ∪ Eq, <p ∪ <◦S ∪ <q, lp ∪ lq)
where <◦S= Ep × Eq

(Ep, <p, lp) ◦W (Eq , <q, lq) = (Ep ∪Eq, (<p ∪ <◦W ∪ <q)+, lp ∪ lq)
where <◦W = {(e, f) | e, f : e ∈ Ep ∧ f ∈ Eq ∧ φ.(lp.e) = φ.(lq.f)}

Operator ‖ denotes parallel composition, and operators ◦S and ◦W denote strong
and weak sequential composition, respectively. These operators are associative
and they have unit element [ε]. Since parallel composition is also commutative,
we can use ‖ as a quantifier.

In our running example, φ.(!(a, X, Y )) = X and φ.(?(a, X, Y )) = Y . Let laters
p4 and p5 be defined as p4 = p1 ◦W p2 and p5 = p1 ◦W p3. The structure of p5 is
visualized as e1 e9 e10 e11 e12 e2 e3 e8 e13 .

2.5 Deadlocks

A later (E, <, l) contains a deadlock if there is an event e : e ∈ E such that
e < e. Conversely, a later is deadlock-free if the (transitive) causality rela-
tion is a strict partial order (i.e. irreflexive, asymmetric and transitive). These
definitions are consistent, since asymmetry implies irreflexivity, and transitiv-
ity plus irreflexivity implies asymmetry. In particular, all laters that can be
obtained from the elementary laters using the elementary later operators are
deadlock-free.

For example, consider later p′5 (to be defined in Section 3) with the following
structure: e1 e2 e3 e8 e9 e10 e11 e12 e13 . In this
later there is a circular dependency between events e10 and e11. From the tran-
sitivity of relation < it follows that e10 < e10, hence e10 is a deadlock.

The interpretation of the causality relation is such that the set of events
“behind any deadlock” cannot occur either. We define the set of deadlocked
events Δ for a later (E, <, l) as follows:

Δ.(E, <, l) = {f | e, f : e ∈ E ∧ f ∈ E ∧ e < e ∧ e < f}
In our example we obtain Δ.p′5 = {e10, e11, e12, e13}, and hence events e1, e2, e3,
e8 and e9 are the only events that can occur in later p′5.

2.6 Prefix

A natural way to compare laters is to compare their possible behaviors. If all
possible behaviors of a later p are contained in the possible behaviors of a later
q, we call p a prefix of q. To determine whether p is a prefix of q, we only need
to consider the deadlock-free part of p. If p is a prefix of q, then (1) p may
contain fewer events than q, (2) on this smaller event set, p may contain more
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causalities than q, (3) q’s labeling of events is respected by p, and (4) for
each event that is in both p and q, all events that precede the event in q are also
in p.

Formally, later p is a prefix of later q, denoted p % q, if for some laters
(Ep, <p, lp) � p and (Eq, <q, lq) � q the following four conditions hold:

1. Ep ⊆ Eq

2. <q ∩(Ep × Ep) ⊆<p

3. lp ∩ (Ep × L) = lq ∩ (Ep × L)
4. (∀e, f :: e <q f ∧ f ∈ Ep ⇒ e ∈ Ep)

where Ep = Ep\Δ.(Ep, <p, lp)

In the running example several prefix relations hold, such as p1 % p4 and p1 % p5.
As a corollary of p % q, we have Ep ⊆ Eq for Eq = Eq\Δ.(Eq, <q, lq). Prefix

order % is a pre-order (i.e. reflexive and transitive) with smallest element [ε].
Some typical prefixes are p % p‖q, q % p‖q, p % p ◦S q and p % p ◦W q.
In comparison with [KL98], our definition is more explicit, it can deal with
deadlocks and it allows <q ∩(Ep × Ep) to be strictly smaller than <p.

Parallel composition is monotonic in both arguments, while both kinds of se-
quential composition are only monotonic in their second argument (since dead-
locks are invisible). A special kind of prefix is a causality extension:

<⊆<′ ⇒ (E, <′, l) % (E, <, l)

As an example consider later p′5, which is a causality extension of later p5.

2.7 Projection

To restrict the set of events of a later, we define a projection operator π that
restricts a later to the events in instance i as follows:

πi.(E, <, l) = (F, < ∩(F × F ), l ∩ (F × L))
where F = {e | e : e ∈ E ∧ φ.(l.e) = i}

Its relation with parallel composition is p % (‖i : i ∈ I : πi.p), and it is
monotonic with respect to causality extensions:

<⊆<′ ⇒ πi.(E, <′, l) % πi.(E, <, l)

2.8 Sets of Laters

Usually a single later cannot describe all possible behavior of a system. There-
fore we study a set of laters (which is the notion of process in [Pra86], and
pomset in [KL98]), which represents the set of behaviors of the individual lat-
ers. We lift each elementary later operator ⊕ and the projection operator π as
follows:

P ⊕ Q = {p ⊕ q | p, q : p ∈ P ∧ q ∈ Q}
πi.P = {πi.p | p : p ∈ P}
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To lift the prefix order %, we define order ' as follows:

P ' Q ≡ (∀p : p ∈ P : (∃q : q ∈ Q : p % q))

Order ' is a pre-order with smallest element ∅. Like before, parallel composition
is monotonic in both arguments, while both kinds of sequential composition are
only monotonic in their second argument. Relation .= defined as

P
.= Q ≡ P ' Q ∧ Q ' P

is an equivalence relation. Equivalence P
.= Q denotes that P and Q have the

same sets of deadlock-free prefixes, which means that they are trace equivalent.

3 Asynchronous Communication

In this section we develop an operator that introduces in a later the causalities
that correspond to asynchronous message communication. To model distributed
systems with communication via message passing, some labels are used to denote
sending or receiving a message. The most liberal causalities are obtained by
matching sends and receipts in their order of occurrence. This does not require
that messages with identical names are communicated in FIFO order.

3.1 Label-Wise Trichotomy

To match events properly, we need to determine the order in which events with
identical labels occur. For simplicity reasons, we assume for each label that
the events with that label are totally ordered; at least, in the deadlock-free
part of the later. Since this deadlock-free part is strict partially ordered, we
only need trichotomy (or comparability) for events with identical labels. For
notational convenience, we require this property for the whole later and for all
labels.

The label-wise trichotomy property T is defined as follows:

T.P ≡ (∀p : p ∈ P : T.p)
T.(E, <, l) ≡ (∀e, f :: l.e = l.f ⇒ e = f ∨ e < f ∨ f < e)

As we will see in Section 4, this only imposes a few, acceptable restrictions
on MSCs. This property is maintained under causality extensions and event
restrictions, it holds for the elementary laters, and it is maintained under se-
quential composition; only for a parallel composition (Ep, <p, lp) ‖ (Eq, <q, lq)
label-disjointness is required, i.e. (∀e, f : e ∈ Ep ∧ f ∈ Eq : lp.e = lq.f).

3.2 Communication Causalities

We define operator Γ.p, which introduces the communication causalities in a
later p. For compositional MSC, we must also address communication between
two sequentially composed laters. Therefore we introduce an extra parameter t
to denote the entire preceding behavior of later p in terms of a later.
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For each message m, we must ensure that each receipt event (with label ?m)
is preceded by the corresponding/matching send event (with label !m). In case
there are more receive events than send events, these remaining receipt events
are turned into deadlocks. Thus we obtain (provided T.t and T.P hold):

Γ t.P = {Γ t.p | p : p ∈ P}
Γ t.(E, <b, l) = (E, (<b ∪ <c)+∪ <d, l)

where <c=<′
c ∩ (E × E) and <d=<′

d ∩ (E × E)

and (E′, <′, l′) = t ◦W (E, <b, l) and E′ = E′\Δ.(E′, <′, l′)
and <′

c= {(e, f) | e, f, m : e ∈ E′ ∧ f ∈ E′ ∧ l′.e =!m ∧ l′.f =?m ∧
(#g :: g <′ e ∧ l′.g =!m) = (#g :: g <′ f ∧ l′.g =?m)}

and <′
d= {(f, f) | f, m : f ∈ E′ ∧ l′.f =?m ∧

(#g :: g ∈ E′ ∧ l′.g =!m) ≤ (#g :: g <′ f ∧ l′.g =?m)}
In this definition, first an auxiliary later (E′, <′, l′) is computed as the sequential
composition of t and (E, <b, l). Then causalities <′

c are defined for the matching
communications, and causalities <′

d are defined for the deadlocked receipt events.
Finally, only the causalities on events E (i.e. not on events from previous behavior
t) are added to later (E, <b, l).

For the running example, we define later p′4 = Γ [ε].p4 and p′5 = Γ [ε].p5. When
visualizing p′4 and p′5, we add the additional communication causalities according
to <′

c with dashed arrows, and the additional deadlock causality for unmatched
receipts (<′

d) with a dotted arrow as follows:

p′4:

e1 e4 e5

e2 e3 e6 e7 p′5:

e1 e9 e10 e11 e12

e2 e3 e8 e13

For p′4 this then boils down to: e1 e2 e3 e4 e5 e6 e7 .

For p′5, the result was already visualized in Section 2.
The role of parameter t of Γ is illustrated in the following important property

of sequential composition (see also Section 6):

Γ t.({p} ◦W Q) .= Γ t.({p} ◦W Γ t◦W p.Q)

Since Γ is a causality extension, it maintains predicate T . However, Γ can in-
troduce deadlocks. The following are some other properties of Γ :

(shrinking) Γ t.p % p
(idempotence) Γ t.p = Γ t.(Γ t.p)
(monotonicity) p % q ⇒ Γ t.p % Γ t.q

These properties can even be generalized to sets of laters.

4 Semantics of Compositional MSC

Using the preceding concepts, we define a semantics of compositional MSC as
an extension of the MSC semantics of [KL98]. For simplicity reasons, we delay
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the introduction of the communication causalities; in Section 6 we will show how
they can be introduced earlier (like in [KL98]). We start by giving the semantics
of basic MSC, then the semantics of high-level MSC, and finally we complete
this semantics by including the communication causalities.

4.1 Basic MSC

The semantics (without communication) of basic MSC B in instance-oriented
textual representation [Ren99] is defined as a later Mbmsc[[B]] as follows:

Mbmsc[[〈 〉]] = [ε]
Mbmsc[[inst i; S endinst; B]] = Minst[[S]](i) ‖Mbmsc[[B]]

Minst[[〈 〉]](i) = [ε]
Minst[[a; S]](i) = Minst[[a]](i) ◦S Minst[[S]](i)

Minst[[in n from j]](i) = [?(n, j, i)]
Minst[[out n to j]](i) = [!(n, i, j)]

Minst[[local b]](i) = [b(i)]
Minst[[co 〈 〉 endco]](i) = [ε]

Minst[[co a; C endco]](i) = Minst[[a]](i) ‖Minst[[co C endco]](i)

Function φ can then be defined as follows: φ.(?(n, j, i)) = i, φ.(!(n, i, j)) =
i and φ.(b(i)) = i . By construction, each later Mbmsc[[...]] is a strict partial
order.

To ensure that predicate T is satisfied, we assume that no instance name oc-
curs more than once per bMSC [Ren99], and we require that in each co-region
the events are label disjoint. The interest in co-regions is usually very limited
(they are completely excluded in [HJ00, GMP03]), so this is no severe restric-
tion. The unrealistic assumption that for each message name there is at most
one send event and at most one receipt event per bMSC [KL98], is not required
here.

4.2 High-Level MSC

The semantics (without communication) of high-level MSC A in textual repre-
sentation is defined as a set of laters Mhmsc[[A]] as follows:

Mhmsc[[empty]] = {[ε]}
Mhmsc[[msc name; B endmsc]] = {Mbmsc[[B]]}

Mhmsc[[A seq B]] = Mhmsc[[A]] ◦W Mhmsc[[B]]
Mhmsc[[A alt B]] = Mhmsc[[A]] ∪ Mhmsc[[B]]

By construction, each later in Mhmsc[[...]] is a strict partial order, and satisfies
predicate T . We do not explicitly address iteration, since it is just repeated
sequential composition. Sometimes the parallel composition of high-level MSCs,
denoted by par, is also considered. Its semantics can easily be expressed in terms
of operator ‖ on sets of laters, but we will not consider it in our study.
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4.3 MSC

Finally we introduce the causalities imposed by communication:

Mmsc[[A]] = M [ε]
msc[[A]]

M t
msc[[A]] = Γ t.Mhmsc[[A]]

This is a proper definition since Mhmsc[[A]] satisfies predicate T . By construction,
predicate T also holds for M t

msc[[A]]. Note that the application of Γ t may introduce
deadlocks, which violate the strict partial order property. This illustrates one of
the reasons for our extended partial order semantics.

Using the example laters from Sections 2 and 3, the semantics of the MSC
in Figure 1 corresponds to Γ [ε].({p1} ◦W ({p2} ∪ {p3})), which simplifies via
{Γ [ε].(p1 ◦W p2), Γ [ε].(p1 ◦W p3)} into {p′4, p′5}. These two laters represent the
possibility of either performing ex1 followed by ex2, or ex1 followed by ex3.

In [GMP03] there is a restriction that receive events in bMSCs may not be
matched to send events in future bMSCs. In [MM01] an extension is proposed
that drops this restriction. We consider the extension, since the original restric-
tion conflicts with elegant rules, like sequential composition of two bMSCs being
equal to simply connecting the instance axis [Ren99].

5 Implementations

In this section we explain how specifications are implemented. The difference
between a specification and an implementation is that a specification describes
behavior in terms of all instances, while an implementation describes behavior
in terms of each individual instance. Thus an implementation for an instance
can be represented by a set of laters that contain events of that instance only.

To synthesize an implementation, the specification is decomposed according
to the instances. The joint execution behavior of an implementation is obtained
by recomposing the instances. We do not consider the unusual implementation
with message parameters proposed in [Gen05], which effectively boils down to
renaming the messages and shifting the moments of choice. In such an imple-
mentation, additional parameters in a request message are sometimes used to
fix the choice that should made by the receiver of the request.

5.1 Decomposition

The typical decomposition D of a set of laters M to its instances is:

D.M = {[i #→ πi.M ] | i : i ∈ I}
In this set, each instance name is mapped to the corresponding projection of M .
Since projection is an event restriction, predicate T is maintained.

For our running example, the decomposition of the laters, D.{p′4, p′5}, yields
the following: { [X #→ { e1 e4 e5 , e1 e9 e10 e11 e12 }],
[Y #→ { e2 e3 e6 e7 , e2 e3 e8 e13 }] }.
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Let us briefly investigate what might be lost by decomposition. For a single-
ton set {(E, <, l)}, note that E and l are partitioned per instance, and hence
only the causalities between different instances are lost. For each later in a
larger set M , also the link between its projections in the different instances
is lost.

5.2 Recomposition

To study the joint execution behavior of the decompositions, the decomposition
has to be recomposed. Using the definition from the previous section, the typical
recomposition R of a decomposition becomes:

Rt.{[i #→ πi.M ] | i : i ∈ I} = Γ t.(‖i : i ∈ I : πi.M)

This is a proper definition provided T.M holds, since T is maintained un-
der parallel composition with disjoint labels. The projections are label-disjoint,
since for each label k all events with that label belong to one instance,
viz. φ.k .

We emphasize that Rt ◦ D, where ◦ denotes function composition, is not
monotonic with respect to '. For causality extensions like Γ t, we have:

(Rt ◦D).(Γ t.P ) ' (Rt ◦D).P

5.3 Implementations in Operational Formalisms

Using our later representation, implementations in operational formalisms can
easily be obtained. In an interleaved execution model where the labels denote
atomic actions, the maximal behaviors of a single later are the linearizations of
the maximal deadlock-free prefix. The set of maximal behaviors of a set of laters
is the union of the linearizations of the individual laters. In turn, linearizations
can easily be transformed to process algebraic expressions using the delayed
choice operator [BM95]. The implementation of our running example corresponds
to the following CSP-style implementation:

X : !a · (?b · !c + ?d )
Y : ?a · !b · (?c + !d · ?c )

6 Relation Between Specification and Implementation

In this section, we investigate whether compositional MSC specifications are
trace equivalent to their implementations, i.e. for all A and t:

M t
msc[[A]] .= (Rt ◦D).M t

msc[[A]]

For details of the proofs we refer to [MRW06].
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6.1 The Implementation Contains the Specification

In this section we show that the specification is contained in the implementation,
i.e. for all A and t: M t

msc[[A]] ' (Rt ◦D).M t
msc[[A]]. It can be proved as follows:

(Rt ◦D).M t
msc[[A]]

= {definition of Rt ◦D}
Γ t.(‖i : i ∈ I : πi.M

t
msc[[A]])

( {property of π and ‖; monotonicity of Γ}
Γ t.M t

msc[[A]]
= {definition of M t

msc[[A]]; idempotence of Γ}
M t

msc[[A]]

6.2 The Specification Contains the Implementation

In this section we derive conditions under which the implementation is contained
in the specification, i.e. for all A and t: (Rt ◦D).M t

msc[[A]] ' M t
msc[[A]]. We will

set up an inductive argument based on the structure of the high-level MSC. We
assume that the following rewrite rules have been applied:

(empty) seq C → C
(A seq B) seq C → A seq (B seq C)
(A alt B) seq C → (A seq C) alt (B seq C)

These rules do not change the occurrences of choice, but they ensure that the first
argument of sequential composition is just a single bMSC. Using the property
of Γ and ◦W in Section 3, we derive an alternative characterization of M t

msc[[...]]
in which communication is addressed earlier (like in [KL98]):

M t
msc[[msc name; A endmsc]] = M t

msc[[msc name; A endmsc seq empty]]
M t

msc[[empty]] = {[ε]}
M t

msc[[msc name; A endmsc seq B]] .= Γ t.({Mbmsc[[A]]} ◦W M t ◦W Mbmsc[[A]]
msc [[B]])

M t
msc[[A alt B]] = M t

msc[[A]] ∪M t
msc[[B]]

Empty. For sake of space, we omit the very simple proof of this base case.

Sequential Composition. This inductive case can be proved as follows:
(Rt ◦D).M t

msc[[msc name; A endmsc seq B]]
.= {alternative characterization}

(Rt ◦D).(Γ t.({Mbmsc[[A]]} ◦W M t◦W Mbmsc[[A]]
msc [[B]]))

' {monotonicity}
(Rt ◦D).({Mbmsc[[A]]} ◦W M t◦W Mbmsc[[A]]

msc [[B]])
.= {• see below}

Γ t.({Mbmsc[[A]]} ◦W (Rt◦W Mbmsc[[A]] ◦D).M t◦W Mbmsc[[A]]
msc [[B]])

.= {induction hypothesis, monotonicity of Γ and ◦W }
Γ t.({Mbmsc[[A]]} ◦W M t◦W Mbmsc[[A]]

msc [[B]])
.= {alternative characterization}

M t
msc[[msc name; A endmsc seq B]]
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The step marked • follows from the following rule, where m denotes a later that
does not order events in different instances, and M denotes a set of laters:

(Rt ◦D).({m} ◦W M) .= Γ t.({m} ◦W (Rt ◦W m ◦D).M)

Alternative Composition. This inductive case can be proved as follows:
(Rt ◦D).M t

msc[[A alt B]]
= {alternative characterization}

(Rt ◦D).(M t
msc[[A]] ∪M t

msc[[B]])
' {� see below}

(Rt ◦D).M t
msc[[A]] ∪ (Rt ◦D).M t

msc[[B]]
.= {induction hypothesis (twice)}

M t
msc[[A]] ∪ M t

msc[[B]]
= {alternative characterization}

M t
msc[[A alt B]]

The step marked � is not only a sufficient condition, but also a necessary one.
Since it does not hold for each MSC, we will study it further.

6.3 Sound Choice

Checking condition � is quite involved in practice, since by definition of Rt ◦D
arbitrary combinations of projected laters (i.e. from both M t

msc[[A]] and M t
msc[[B]])

need to be considered. In Section 7 we will relate various realizability criteria to
this condition, but in this section we first strengthen it into a more convenient
condition for this purpose; for the details we refer to [MRW06].

We strengthen condition � into what we call the sound choice property: there
exists an instance k such that for each instance j : j = k both

– ∀ g :: [I → M t
msc[[A]]], n : n ∈ πj .M

t
msc[[B]] ∧ {n} ' πj .M

t
msc[[A]]:

Γ t.((‖i : i = j : πi.gi) ‖ n) % Γ t.(‖i : i = j : πi.gi)

– ∀ h :: [I → M t
msc[[B]]], m : m ∈ πj .M

t
msc[[A]] ∧ {m} ' πj .M

t
msc[[B]]:

Γ t.((‖i : i = j : πi.hi) ‖ m) % Γ t.(‖i : i = j : πi.hi)

Here functions g and h represent a chosen later per instance. Later n : n ∈
πj .M

t
msc[[B]] ∧ {n} ' πj .M

t
msc[[A]] denotes a later from MSC B that is no prefix of

any later from MSC A. Note that behaviors occurring both in MSC A and MSC
B are not problematic for the choice between A and B. The %-term expresses
that later n (or later m) cannot perform any behavior. Instance k and condition
j = k ensure that some instance may have initiative.

The choice in our running example is not a sound choice, as can be pointed out
by considering both options for k. For k = X , we can choose n = πY .(Γ p1.p3)
and gX = Γ p1.p2, which violate the first % term; and similarly for k = Y . We
will discuss it in more detail using the non-local choice criterion in Section 7.

Notice that instead of considering arbitrary combinations of projected laters,
on the left-hand side of the % in this condition, the combinations of projected
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laters contain only one later n from B, or only one later m from A respectively.
Finally we stress that this condition is stronger than condition �.

7 Realizability Criteria

The sound choice property of the previous section implies that the specification
and the implementation are trace equivalent; otherwise the specification may not
be realizable. In this section we convert the realizability criteria from [MGR05] to
high-level MSCs with binary choice, and generalize them to compositional MSC
with co-regions. We first depict how the criteria are classified in comparison with
sound choice and derived condition � from the previous section:

derived condition sound choice
¬ non-local choice
propagating choice ¬ non-deterministic choice

¬ race choice

Example MSCs for (combinations of) these criteria can be found in [MGR05].

7.1 Non-local Choice

A choice between two MSCs is local if at most one instance has initiative in these
MSCs; otherwise several instances can independently start executing different
MSCs. An instance has initiative in an MSC if some first event of the instance
is labeled with either an internal action, or sending a message, or receiving a
message that was sent before the choice. The choice in our running example is
non-local, since due to events e4 and e8 both X and Y have initiative.

Non-local choice follows naturally from sound choice, and in particular from
its %-terms. Observe that a later n is likely to be problematic if for each label-
disjoint later x we have Γ t.(x‖n) % Γ t.x. This condition follows from Γ t.n % [ε],
which means that later n contains an initiating event. Due to condition j = k
in the definition of sound choice, only instance k may have initiative, i.e. no two
different instances, say i and j, may have initiative. This leads to the non-local
choice criterion:

(∃i, j, m, n :: i = j ∧m ∈ πi.M
t
msc[[A]] ∧ {m} ' πi.M

t
msc[[B]] ∧ Γ t.m % [ε]

∧ n ∈ πj .M
t
msc[[B]] ∧ {n} ' πj .M

t
msc[[A]] ∧ Γ t.n % [ε] )

The difference with other variants of non-local choice in [BAL97, HJ00, MGR05]
is in our first two conjuncts on both m and n, where we ensure that sound choice
is violated.

7.2 Propagating Choice

Absence of non-local choice is not sufficient to guarantee sound choice. It does
guarantee that there is at most one instance that determines the choice, viz. in-
stance k in the definition of sound choice. The other instances j have no initiative
and hence their chosen laters n are characterized by Γ t.n % [ε]. What remains to
guarantee sound choice is that the other instances can resolve the choice, which
is characterized by the propagating choice property (see also [MGR05]): for each
instance j both



Realizability Criteria for Compositional MSC 261

– ∀ g :: [I → M t
msc[[A]]], n : n ∈ πj .M

t
msc[[B]] ∧ {n} ' πj .M

t
msc[[A]] ∧ Γ t.n % [ε]:

Γ t.((‖i : i = j : πi.gi) ‖ n) % Γ t.(‖i : i = j : πi.gi)

– ∀ h :: [I → M t
msc[[B]]], m : m ∈ πj .M

t
msc[[A]] ∧ {m} ' πj .M

t
msc[[B]]∧ Γ t.m % [ε]:

Γ t.((‖i : i = j : πi.hi) ‖ m) % Γ t.(‖i : i = j : πi.hi)

7.3 Non-deterministic Choice

Propagating choice is an important property, but it is not easy to apply. A simple
case that violates it is when the MSCs contain behaviors m and n that are
different, although they share a common prefix p, i.e. p % m and p % n. In case
such a prefix p starts with a receipt behavior, instance j cannot resolve the choice
using one of its initial events. This is characterized by the non-deterministic
choice criterion (see also [MGR05]):

(∃j, m, n, p :: p % m ∧ p % n ∧
m ∈ πj .M

t
msc[[A]] ∧ {m} ' πj .M

t
msc[[B]] ∧ Γ t.m % [ε]

∧ n ∈ πj .M
t
msc[[B]] ∧ {n} ' πj .M

t
msc[[A]] ∧ Γ t.n % [ε]

∧ (∃g, h : g :: [I → M t
msc[[A]]] ∧ h :: [I → M t

msc[[B]]] :
(Γ t.((‖i : i = j : πi.gi) ‖ p) % Γ t.(‖i : i = j : πi.gi)
∨ Γ t.((‖i : i = j : πi.hi) ‖ p) % Γ t.(‖i : i = j : πi.hi)) ) )

This criterion can be made more syntactic by weakening the inner existential
quantification into condition p % [ε]. Although non-deterministic choice violates
sound choice, it does not guarantee that the condition � in Section 6 is violated;
so sound choice has been a real strengthening.

7.4 Race Choice

Absence of non-deterministic choice is not sufficient to guarantee propagating
choice. It does guarantee that the choice can be resolved when no initiating
receipt event can end up receiving a message intended for a non-initial receipt
event in another MSC. The other cases are characterized by the race choice
criterion (see also [MGR05]). Its formal definition is very similar to the definitions
of propagating choice and non-deterministic choice, see also [MRW06].

In [HJ00] the reconstructible choice criterion is proposed in order to guarantee
realizability. However, this claim contradicts their example of a reconstructible
MSC (see Figure 15 in [HJ00]). In terms of our classification, it suffers from
race choice: if instance A sends message m1 before message m5, instance B may
receive message m6 (related to m5) before message m3 (related to m1).

8 Conclusions and Further Work

We have developed a denotational semantics for compositional MSC through our
extension of pomsets with deadlocks. In this formalism we have studied realiz-
ability, especially of the choice construct. We have discussed various proposed
realizability criteria and shown completeness of our classification in [MGR05].
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Realizability problems can also be detected by verifying the implementation
[UKM03]. However, it is far more effective to have criteria for specifications, and
to develop ways to make specifications realizable [HJ00]. For the latter, we plan
to evaluate our proposals in [MG05, MGR05] using the current framework, and
to automate them.

A possible extension is to explore other realizability criteria, especially since
sound choice is a real strengthening. In addition, more syntactical criteria would
better allow automation. Also the realizability of other MSC constructs may be
studied, of which parallel composition is a challenging one.
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Abstract. We propose an algebraic semantics for the temporal logic
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we do not intend to provide something like an interpretation between logical
theories.

The remainder of this paper is organised as follows. Section 2 briefly reca-
pitulates the standard semantics of CTL∗ and gives a set-based view of it that
prepares the algebraic semantics. In Section 3 we present the algebraic frame-
work of quantales enriched by tests, modal operators and iteration. Section 4
gives an algebraic semantics of full CTL∗ that abstracts a set-based view of the
standard semantics. The next section discusses the algebraic properties of the
semantic element that models the next-time operator. Section 6 shows that the
denotations of state formulas are in one-to-one correspondence with tests, i.e.,
abstract representations of sets of states. This prepares the simplified semantics
for CTL and LTL that are derived from the full semantics in Sections 7 and 8. It
turns out that much weaker requirements on the underlying algebras now suffice:
modal Kleene algebra with a convergence operator in the case of CTL and plain
modal Kleene algebra for LTL. A brief conclusion is presented in Section 9.

2 Modelling CTL∗

The language Ψ of CTL∗ formulas (see e.g. [9]) over a set Φ of atomic proposi-
tions is defined by the grammar

Ψ ::= ⊥ | Φ | Ψ → Ψ | XΨ | Ψ U Ψ | EΨ,

where X and U are the next-time and until operators and E is the existential
quantifier on paths. The logical connectives ¬,∧,∨, A are defined, as usual, by
¬ϕ =df ϕ → ⊥, ϕ∧ψ =df ¬(ϕ → ¬ψ), ϕ∨ψ =df ¬ϕ → ψ and Aϕ =df ¬E¬ϕ.
The sublanguages Σ of state formulas that denote sets of computation traces
and Π of path formulas that denote sets of states are given by

Σ ::= ⊥ | Φ | Σ → Σ | EΠ,
Π ::= Σ | Π → Π | XΠ | Π U Π.

To motivate our algebraic semantics, we briefly recapitulate the standard
CTL∗ semantics formulas. Its basic objects are traces σ from S+ or Sω, the
sets of finite non-empty or infinite words over some set S of states. The i-th
element of σ (indices starting with 0) is denoted σi, and σi is the trace that
results from σ by removing its first i elements.

Each atomic proposition π ∈ Φ is associated with the set Sπ ⊆ S of states
for which π is true. The relation σ |= ϕ of satisfaction of a formula ϕ by a trace
is defined inductively (see e.g. [9]) by

σ |= ⊥,
σ |= π iff σ0 ∈ Sπ,
σ |= ϕ → ψ iff σ |= ϕ implies σ |= ψ,
σ |= Xϕ iff σ1 |= ϕ,
σ |= ϕU ψ iff ∃ j ≥ 0 . σj |= ψ and ∀ k < j . σk |= ϕ,
σ |= Eϕ iff ∃ τ . τ0 = σ0 and τ |= ϕ.

In particular, σ |= ¬ϕ iff σ |= ϕ.
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From this semantics one can extract a set-based one by assigning to each
formula ϕ the set [[ϕ]] =df {σ | σ |= ϕ} of paths that satisfy it. This is the basis
of the algebraic semantics in Section 4.

We quickly repeat the proof of validity of the CTL∗ axiom

¬Xϕ ↔ X¬ϕ, (1)

since this will be crucial for the algebraic representation of X in Section 4:

σ |= ¬Xϕ ⇔ σ |= Xϕ ⇔ σ1 |= ϕ ⇔ σ1 |= ¬ϕ ⇔ σ |= X¬ϕ .

3 Quantales, Modal Operators and Iteration

W now prepare the algebraic setting. A left quantale is a structure (S,≤, 0, ·, 1)
where (S,≤) is a complete lattice with least element 0 and an associative mul-
tiplication (to model sequential composition) that preserves arbitrary joins in
its left and non-empty joins in its right argument. Moreover, 1 is required to be
neutral w.r.t. multiplication, playing the role of inaction. The meet and join of
two elements a, b ∈ S are denoted by a � b and a + b, resp. Both operators have
equal binding power, which is lower than that of multiplication. The greatest
element of S is denoted by *. The definition implies that · is left-strict , i.e., that
0 · a = 0 for all a ∈ S.

A right quantale is defined symmetrically. Finally, (S,≤, 0, ·, 1) is a quan-
tale [20] if it is both a left and right one. In a (right) quantale multiplication is
right-strict, i.e., a · 0 = 0 for all a ∈ S. The notion of a quantale is equivalent to
that of a standard Kleene algebra [3].

A (left) quantale is called Boolean if its underlying lattice is distributive and
complemented, whence a Boolean algebra. An important Boolean quantale is
REL(M), the algebra of binary relations over a set M under set union and
relational composition; further examples will be presented below.

General quantale elements abstractly represent sets of paths, i.e., the seman-
tics of path formulas. To model state formulas we use tests as introduced into
Kleene algebras by Kozen [15]. In REL(M) a set of elements can be modelled as
a subset of the identity relation; meet and join of such partial identities coincide
with their composition and union. Generalising this, a test in a (left) quantale
is an element p ≤ 1 that has a complement q relative to 1, i.e., p + q = 1 and
p · q = 0 = q · p. The set of all tests of a quantale S is denoted by test(S). It
is not hard to show that test(S) is closed under + and · and has 0 and 1 as its
least and greatest elements. Moreover, the complement ¬p of a test p is uniquely
determined. Hence test(S) forms a Boolean algebra. If S itself is Boolean then
test(S) coincides with the set of all elements below 1. We will consistently write
a, b, c . . . for arbitrary semiring elements and p, q, r, . . . for tests. Also, we will
freely use the standard Boolean operations on test(S), for instance implication
p → q = ¬p + q, with their usual laws.

With the above definition of tests we deviate slightly from [15], in that we do
not allow an arbitrary Boolean algebra of subidentities as test(S) but only the
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maximal complemented one. The reason is that the axiomatisation of domain to
be presented below will force this maximality anyway (see [6]).

A set of states will now be represented abstractly by a test. Left and right
multiplication by a test correspond to restricting an element on the input and
output side, resp. This allows us to represent the set of all possible paths that
start with a state in set p by the test ideal p · *.

Example 3.1. We now introduce two further important Boolean left test quan-
tales. Both are based on finite and infinite words over an alphabet A. Next
to their classical interpretation as characters, the elements of A may e.g. be
interpreted as states in a computation system, or, in connection with graph al-
gorithms, as nodes in a graph. So words over A can be used to model paths in
a transition system. As usual, A∗ is the set of all finite words over A including
the empty word ε. Moreover, Aω is the set of all infinite words over A. We set
A∞ =df A∗ ∪ Aω. Concatenation is denoted by juxtaposition, where st =df s
if s ∈ Aω .

A language over A is a subset of A∞. As usual, we identify a singleton language
with its only element. For a language U ⊆ A∞ we define its infinite and finite
parts by

inf U =df U ∩Aω, finU =df U − inf U .

The left Boolean quantale WOR(A) = (P(A∞),⊆, ∅, ·, {ε}) is obtained by
extending concatenation to languages in the following way:

U · V =df inf U ∪ (fin U)V .

Note that in general U · V = ST ; for V = ∅ one has ST = ∅, whereas U · V =
inf U . It is straightforward to show that WOR(A) is indeed a left quantale. This
algebra is well-known from the classical theory of ω-languages (see e.g. [22] for
a survey). However, its neutral element is {ε} and therefore its test algebra
test(WOR(A)) = {∅, {ε}} is rather trivial and not suitable for our purposes.

Therefore, besides this model we use a second one with a more refined view of
multiplication and hence a richer and more useful test algebra. It uses non-empty
words and the fusion product � of words as a language-valued multiplication
operation. For s ∈ A+, t ∈ Aω , u ∈ A∞ − ε and x, y ∈ A,

sx � xu =df sxu , sx � yu =df ∅ if x = y , t � u =df t .

Informally, a finite non-empty word s can be fused with a non-empty word
t iff the last letter of s coincides with the first one of t; only one copy of that
letter is kept in the fused word.

Since we view the infinite words as streams of computations, we call the left
Boolean quantale based on this multiplication operation STR(A) and define it
by STR(A) =df (P(A∞ − ε),⊆, ∅, �, A), where � is extended to languages in
the following way:

U � V =df inf U ∪ {s � t : s ∈ finU ∧ t ∈ V } .
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This operation has the language A as its neutral element. Moreover, as above,
we have U � ∅ = inf U and hence U � ∅ = ∅ iff inf U = ∅. A transition relation
over a state set A can be modelled in STR(A) as a set R of words of length 2.
The powers Ri of R then consist of the words (or paths) of length i + 1 that are
generated by R-transitions.

The multiplicative identity A has exactly the subsets of A as its subobjects,
so that in this quantale the tests faithfully represent sets of states. ��

Over a left Boolean quantale S the domain operation � : S → test(S) returns,
for a set of paths represented by an element a ∈ S, the set of their starting
states. It is axiomatised by the Galois connection

�a ≤ p ⇔ a ≤ p · * .

This is well defined, since in a Boolean left quantale · preserves arbitrary meets of
tests in its left argument [4], and hence in left Boolean quantales domain always
exists. By general properties of Galois connections, domain preserves arbitrary
joins. For further domain properties see [6].

We list a number of important properties of tests, test ideals and domain; for
the proofs see [17].

Lemma 3.2. Assume a left Boolean quantale.

(a) �(p · *) = p.
(b) p ≤ q ⇔ p · * ≤ q · *.
(c) If the meet a � b exists then p · a � b = p · (a � b).

Hence also p · * � a = p · a and p · (a � b) = p · a � p · b.
(d) p · a � q · a = p · q · a.
(e) ¬p · * = p · *.

By (b) the set of test ideals is isomorphic to the set of tests. To use the above
properties freely, we assume for the remainder that S is a Boolean left quantale.

Using domain we define (forward) modal operators. For a ∈ S, q ∈ test(S),

〈a〉q =df �(a · q) , [a]q =df ¬〈a〉¬q .

The diamond is an abstract inverse-image operator, whereas box generalises the
notion of the weakest liberal precondition wlp to Boolean left quantales. If we
view a as the transition relation of a command then the test [a]q characterises
those states from which no transition under a is possible or the execution of a
is guaranteed to end up in a final state that satisfies test q. Both operators are
isotone in their test argument. Hence in a Boolean quantale we have the full
power of the modal μ-calculus [12] available.

In particular, the convergence �a ∈ test(S) of an element a, defined by

�a =df μx . [a]x ,

characterises the set of states from which no infinite transition paths emerge.
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To make the modal operators well-behaved w.r.t. composition we need to
assume that the underlying quantale satisfies

�(a · b) = �(a · �b), (2)

since then 〈a · b〉 = 〈a〉 ◦ 〈b〉 and [a · b] = [a] ◦ [b], where ◦ is composition of
modal operators. Therefore we call a (left) quantale with this property modal .
Both WOR(A) and STR(A) are modal.

We will also need finite iteration a∗ and infinite iteration aω of quantale
elements. They are defined as usual by

a∗ =df μx . 1 + a · x , aω =df νx . a · x ,

where μ and ν are the least and greatest fixpoint operators, resp. If, like in a
Boolean quantale, + is completely conjunctive then, as shown in [1], these oper-
ations satisfy the axioms of a left Kleene/ω-algebra [14, 2]. The two operations
are connected as follows (see e.g. [1]):

a∗ · b = μx . b + a · x , aω + a∗ · b = νx . b + a · x . (3)

In a modal left quantale, star, convergence and box interact according to the
following induction and coinduction laws [6, 7]:

x ≤ p · [a]x ⇒ x ≤ [a∗]p, (4)
�a · [a∗]p = μx . p · [a]x. (5)

Dual laws hold for the diamond operator.
Modal quantales (and, more generally, modal ω/convergence algebras) of-

fer additional flexibility compared to PDL [12] and the μ-calculus, since the
modal operators are defined for ω-regular expressions, not only for atomic
actions.

4 Algebraic Semantics of CTL∗

We now give our algebraic interpretation of CTL∗ over a Boolean modal quantale
S. To save some notation we set Φ = test(S). Moreover, we fix an element n (n
standing for “next”) that represents the transition system underlying the logic.
The precise requirements for n will be discussed in Section 5. Then the concrete
semantics above generalises to a function [[ ]] : Ψ → S, where [[ϕ]] abstractly
represents the set of paths satisfying formula ϕ:

[[⊥]] = 0,
[[p]] = p · *,

[[ϕ → ψ]] = [[ϕ]] + [[ψ]],
[[Xϕ]] = n · [[ϕ]],

[[ϕU ψ]] = �
j≥0

(nj · [[ψ]]� �
k<j

nk · [[ϕ]]),

[[Eϕ]] = �[[ϕ]] · *.
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Using these definitions, it is straightforward to check that

[[ϕ ∨ ψ]] = [[ϕ]] + [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] � [[ψ]], [[¬ϕ]] = [[ϕ]].

Given a set A of states, over the left quantale STR(A) (see Example 3.1)
this semantics coincides with that of Section 2. Another important check of the
adequacy of our definitions is provided by the following theorem. The restriction
on n mentioned in the assumption will be discussed in the next section.

Theorem 4.1. Assume that left multiplication with n distributes through meets.
Then the element [[ϕU ψ]] is the least fixpoint μf of the function
f(y) =df [[ψ]] + ([[ϕ]] � n · y).

Proof. Since in a Boolean quantale multiplication and binary meet preserve arbi-
trary joins, f preserves arbitrary joins, too, and hence is continuous. So by
Kleene’s fixpoint theorem μf =�

j≥0
f j(0). A straightforward induction shows that

f i(0) =�
j≤i

(nj · [[ψ]]� �
k<j

nk · [[ϕ]]),

from which the claim is immediate. ��
We define the usual abbreviations:

Aϕ =df ¬E¬ϕ, Fϕ =df *Uϕ, Gϕ =df ¬F¬ϕ.

Theorem 4.1 and (3) yield the following closed representation of F:

Corollary 4.2. [[Fϕ]] = n∗ · [[ϕ]].

5 The Next-Time Operator

We now want to find suitable requirements on n by considering axiom (1) in
the algebraic setting. To satisfy it, we need to have for all formulas ϕ and their
semantical values b =df [[ϕ]],

n · b = [[¬Xϕ]] = [[X¬ϕ]] = n · b. (6)

This semantic property can equivalently be characterised as follows (property
(a) was already shown in [4]).

Lemma 5.1. Consider a Boolean left quantale S and n ∈ S such that n · 0 = 0.

(a) ∀ b ∈ S : n · b ≤ n · b ⇔ ∀ b, c ∈ S : n · (b � c) = n · b � n · c.
(b) ∀ b ∈ S : n · b ≤ n · b ⇔ n · * = * ⇔ nω = *.

Proof. (a) (⇒) It suffices to show (≥), since the reverse inequality follows by
isotony. By shunting, the assumption n · b ≤ n · b, distributivity, Boolean
algebra, and lattice algebra:
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n · b � n · c ≤ n · (b � c)⇔ n · b ≤ n · c + n · (b � c)⇐ n · b ≤ n · c + n · (b � c)
⇔ n · b ≤ n · (c + (b � c))⇔ n · b ≤ n · (c + b)⇔TRUE.

(⇐) We calculate, using the assumption in the third step:

0 = n · 0 = n · (b � b) = n · b � n · b.

Now the claim is immediate by shunting.
(b) By shunting, distributivity, complement, greatest element, and nω = νy . n·y:

n · b ≤ n·b⇔* ≤ n·b+n·b⇔* ≤ n·(b+b)⇔* ≤ n·*⇔* = n·*⇔ nω = *.
��

In relation algebra, the special case n · 1 ≤ n of the property in (a) characterises
n as a partial function and is equivalent to the full property [21]. But in general
quantales the special and the general case are not equivalent [4]. Moreover, again
from [4], we know that in quantales such as WOR and STR an element n is left-
distributive over meet iff it is prefix-free, i.e. if no member of n is a prefix of
another member. This holds in particular if all words in n have equal length,
which is the case if n models a transition relation and hence consists only of
words of length 2. The equivalent condition ∀ b . n · b � n · b = 0 was used in the
computation calculus of R.M. Dijkstra [8].

But what about property (b)? Only rarely will a quantale be “generated”
by an element n in the sense that nω = *. The solution is to choose a left-
distributive element n and restrict the set of semantical values to the subset
SEM(n) =df {b : b ≤ nω}, taking complements relative to nω. This set is clearly
closed under + and � and under prefixing by n, since by isotony

n · b ≤ n · nω = nω .

Finally, it also contains all elements p · nω with p ∈ test(S), since p ≤ 1. Hence
the above semantics is well-defined in SEM(n) if we replace * by nω.

6 The Semantics of State Formulas

In this section we show, next to some other properties, that the semantics of each
state formula has the special form of a test ideal and hence directly corresponds
to a test, i.e., an abstract representation of a set of states. This will be the key
to the simplified CTL semantics in Section 7.

Theorem 6.1. Let ϕ be a state formula of CTL∗.

(a) [[ϕ]] is a test ideal, and hence, by Lemma 3.2(a), [[ϕ]] = �[[ϕ]] · *.
(b) [[Eϕ]] = [[ϕ]].
(c) [[Aϕ]] = ¬�([[ϕ]]) · *.

Proof. (a) The proof is by induction on the structure of ϕ.
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– For ⊥ and p ∈ test(S) this is immediate from the definition.
– Assume that the claim already holds for state formulas ϕ and ψ. We

calculate, using the definitions, the induction hypothesis, Lemma 3.2(e),
distributivity and the definitions again,

[[ϕ → ψ]] = [[ϕ]] + [[ψ]] = �[[ϕ]] · *+ �[[ψ]] · * = ¬�[[ϕ]] · *+ �[[ψ]] · *
= (¬�[[ϕ]] + �[[ψ]]) · * = (�[[ϕ]] → �[[ψ]]) · *.

– For Eϕ the claim is immediate from the definition.
(b) Immediate from (a) and the definition of [[Eϕ]].
(c) Similar to (b). ��
Moreover, state formulas are closed under ¬,∧,∨ and A.

Next, we derive some properties of U and its relatives for state formulas. For
this we use knowledge about dual functions and their fixpoints. The (de Morgan)
dual f◦ of a function f : S → S over a Boolean quantale is, as usual, defined
by f◦(y) =df f(y). Then μf = νf◦ and νf = μf◦.

Lemma 6.2. Let ϕ, ψ be state formulas of CTL∗ and p·* =df [[ϕ]], q·* =df [[ψ]].
(a) [[ϕUψ]] = (p · n)∗ · q · * = ([[ϕ]] � n)∗ · [[ψ]].
(b) [[Gϕ]] = (p · n)ω = ([[ϕ]] � n)ω.

Hence we have the shunting rule (p · n)ω = n∗ · ¬p · *.

Proof. (a) Using Theorem 4.1 and Lemma 3.2(c) we calculate

[[ϕUψ]] = μy . q · *+ (p · * � n · y) = μy . q · *+ p · n · y,

and the claim follows by (3).
(b) Since [[Fϕ]] = μfp where fp(y) = p · * + n · y, we have, by Lemma 3.2(e),

[[Gϕ]] = [[¬F¬ϕ]] = νf◦
¬p, where, again by Lemma 3.2(e) and by (6),

f◦
¬p(y) = ¬p · *+ n · y = ¬p · * � n · y = p · * � n · y = p · n · y.

Hence the claim follows by the definition of ω. ��
The case p = 1 yields again Corollary 4.2. Now we deal with E.

Lemma 6.3. [[EXϕ]] = [[EXEϕ]].

Proof. By the definitions, properties of domain, (2) and the definitions again,

[[EXEϕ]] = �(n · �[[ϕ]] · *) · * = �(n · �[[ϕ]]) · * = �(n · [[ϕ]]) · * = [[EXϕ]]. ��
Next, we collect a number of properties of A. The proofs are straightforward
calculations.

Lemma 6.4. For atomic proposition p ∈ test(S),
[[A⊥]] = 0, [[A*]] =*,

[[A(p ∨ ϕ)]] = p + [[Aϕ]], [[A(p ∧ ϕ)]] = p · [[Aϕ]].

Moreover, for the axiom EX* we obtain
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Lemma 6.5. [[EX*]] = * ⇔ �n = 1 ⇔ n total.

Proof. This follows by Lemma 3.2(b), since [[EX*]] = �(n · *) · * = �n · *. ��
We conclude this section by noting that EX and AX are de Morgan duals; again
the proof is a straightforward calculation.

Lemma 6.6. [[AXϕ]] = [[¬EX¬ϕ]].

From this and Lemma 6.3 we obtain

Corollary 6.7. [[AXϕ]] = [[AXAϕ]].

7 From CTL∗ to CTL

For a number of applications the sublogic CTL of CTL∗ suffices. We will see
that it can be modelled in plain Kleene/convergence algebra. Syntactically, CTL
consists of those CTL∗ state formulas that only use path formulas of the restricted
form Π ::= XΣ | Σ UΣ.

From the previous section we already know that the semantics of every CTL
formula is a test ideal t, from which, by Theorem 6.1(a), we can extract the
corresponding test (or state set) as �t. This is reflected by the simplified semantics

[[ϕ]]d =df �[[ϕ]].

This enables us to calculate solely with tests.
First, for the Boolean connectives we obtain by disjunctivity of domain and

Lemma 3.2,

[[ϕ ∨ ψ]]d = [[ϕ]]d + [[ψ]]d, [[ϕ ∧ ψ]]d = [[ϕ]]d · [[ψ]]d, [[¬ϕ]]d = ¬[[ϕ]]d.

Next, we transfer the properties of A from Lemma 6.4 to the simplified semantics.
Again the proofs are straightforward calculations.

Lemma 7.1. For atomic proposition p ∈ test(S),
[[A⊥]]d = 0, [[A*]]d =1,

[[A(p ∨ ϕ)]]d = p + [[Aϕ]]d, [[A(p ∧ ϕ)]]d = p · [[Aϕ]]d.

Now we can calculate the inductive behaviour of [[ ]]d for all CTL formulas.

Theorem 7.2
(a) [[⊥]]d = 0,
(b) [[p]]d = p,
(c) [[ϕ → ψ]]d = [[ϕ]]d → [[ψ]]d,
(d) [[EXϕ]]d = 〈n〉[[ϕ]]d,
(e) [[AXϕ]]d = [n][[ϕ]]d = [[AXAϕ]]d,

(f) [[AFϕ]]d = ¬�n∗ · [[ϕ]]d · * = ¬�(¬[[ϕ]]d · n)ω ,
(g) [[E(ϕUψ)]]d = 〈([[ϕ]]d · n)∗〉[[ψ]]d,
(h) [[A(ϕUψ)]]d = [[AFϕ]]d · [b∗]([[ϕ]]d + [[ψ]]d) where b =df ¬[[ϕ]]d · n.
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The lengthy proof by induction on the structure of the state formulas can be
found in the Appendix. This theorem shows that the sublogic CTL needs fewer
algebraic concepts than full CTL∗: general joins and complementation (and there-
fore also general meet) are not needed. For the CTL semantics a modal left omega
algebra [17] is sufficient.

To complete the picture, we show the validity of the usual least-fixpoint char-
acterisation of A(u), where u = [[ϕUψ]] for state formulas ϕ and ψ. Then, by
Lemma 4.1, the definition of f , Lemma 6.4 twice and Corollary 6.7, we obtain
A(u) = A(f(u)) = A(q · *+ p · n · u) = q · *+ p ·A(n · u) = q · *+ p ·A(n ·A(u)).
In general quantales, however, A(u) need not be the least fixpoint of the asso-
ciated function. We need an additional assumption on the underlying quantale
S, namely that unlimited finite iteration can be extended to infinite iteration in
the following sense:

∀ b ∈ S : �
i∈IN

�(bi) ≤ �(bω). (7)

In particular, S must have “enough” infinite elements to make bω = 0 if all
bi = 0. This property is violated in the subquantale LAN of WOR in which only
languages of finite words are allowed, because in LAN finite languages may be
iterated indefinitely, but no infinite “limits” exist.

Now we can show the desired leastness of A.

Theorem 7.3. Assume (7).
(a) ¬�(bω) = �b.
(b) If b is total, i.e., �b = 1 then also �(bω) = 1.
(c) If [[ϕ]] = p · * then [[AFϕ]]d = �(¬p · a)
(d) [[ϕUψ]]d = μh, where h(y) =df q + p · [n]y.

Proof. (a) First, ¬�(bω) is a fixpoint of [b]:

¬�(bω) = ¬�(b · (bω)) = ¬�(b · ¬¬(bω)) = [b](¬�(bω)).

Hence �b = μ[b] ≤ ¬�(bω). For the converse inequation we calculate By
shunting, (7), and the definition of meet:

¬�(bω) ≤ �b⇔¬�b ≤ �(bω)⇐¬�b ≤�
i∈IN

�(bi)⇐∀ i ∈ IN : ¬�b ≤ �(bi).

Using ¬�b ≤ 1, isotony of domain, the definition of box and that �b is a
fixpoint of [b], we have indeed �(bi) ≥ �(bi · ¬�b) = ¬[bi]�b = ¬�b.

(b) By the assumption (2) of modality multiplication preserves totality: if �a =
�b = 1 then �(a · b) = �(a · �b) = �(a · 1) = �a = 1. Now an easy induction shows
�b = 1 ⇒ ∀ i : �bi = 1 and assumption (7) immediately implies the claim.

(c) Immediate from Theorem 7.2(f) and (a).
(d) From the definition of h we get by Boolean algebra

h(y) = (q + p) · (q + [n]y).

Now the claim follows from (5), Theorem 7.2(h) and (b). ��
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This result shows that for CTL we can even do without omega iteration and need
only a convergence algebra. Recently it has been shown [13] that property (a) is
equivalent to validity of the coinduction rule

p ≤ �(q + a · p) ⇒ p ≤ �(aω + a∗ · q) .

8 From CTL∗ to LTL

The logic LTL is the fragment of CTL∗ in which only A may occur, once and
outermost only, as path quantifier. More precisely, the LTL path formulas are
given by

Π ::= Φ | ⊥ | Π → Π | XΠ | Π U Π.

The LTL semantics is embedded into the CTL∗ one by assigning to ϕ ∈ Π the
semantic value [[Aϕ]].

Unfortunately, except for the cases [[AXϕ]] = [n][[Aϕ]] and [[AGϕ]] = [n∗][[Aϕ]]
the semantics does not propagate nicely in an inductive way into the sub-
formulas, and so a simplified semantics cannot be obtained directly from the
CTL∗ one.

However, by a slight change of view we can still achieve our goal. In the
considerations based on the concrete quantales WOR and STR, the semantic
element n representing X “glued” transitions to the front of traces. However, as
is frequently done, one can also interpret n as a relation that maps a trace σ to
its tail σ1. This is the basis for a simplified semantics of LTL over the Boolean
quantale REL(Aω) (since standard LTL considers only infinite traces) for some
set A of states.

What are the tests involved? Obviously, they now correspond to sets of paths,
since they are subrelations of the identity relation on traces. So in this view
the semantics of LTL formulas is again given by test ideals, only in a different
algebra.

Therefore we can re-use the simplified CTL semantics. In particular, we set

[[Xϕ]]L =df 〈n〉[[ϕ]]L.

This means that [[Xϕ]]L is the inverse image of [[ϕ]]L under the tail relation; hence
the standard LTL semantics is captured faithfully.

What does axiom (1) mean in this interpretation? It is equivalent to the
equation 〈n〉 = [n] which characterises 〈n〉 as a total function. This holds indeed
for the tail relation on Aω .

The semantics of ⊥ and → are as before. It remains to work out the seman-
tics of U. With p =df [[ϕ]]L and q =df [[ψ]]L, we want [[ϕUψ]]L to be the least
fixpoint of the function h(y) =df q+p · 〈n〉y, which by the dual of box induction
(5) is 〈(p · n)∗〉q. By this, the semantics of Fψ and Gψ work out to 〈n∗〉q and
[n∗]q.
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Summarising, our LTL semantics now reads (see also [5])

[[⊥]]L = 0,
[[p]]L = p,

[[ϕ → ψ]]L = [[ϕ]]L → [[ψ]]L,
[[Xϕ]]L = 〈n〉[[ϕ]]L,

[[ϕU ψ]]L = 〈([[ϕ]]L · n)∗〉[[ψ]]L,
[[Fψ]]L = 〈n∗〉[[ψ]]L,
[[Gψ]]L = [n∗][[ψ]]L.

This shows that for LTL we can weaken the requirements on the underlying
semantic algebra even further, viz. to that of a modal Kleene algebra.

9 Conclusion

We have provided a compact algebraic semantics for full CTL∗ in the framework
of modal quantales and shown that for the two sublogics CTL and LTL the se-
mantics can be mapped to closed expressions using modal operators as well as
Kleene star and ω-iteration or the convergence operator. Compared with repre-
sentations of CTL∗ in the modal μ-calculus the compactness is achieved, since in
quantales the modal operators are defined for ω-regular expressions (and even
more generally), not only for atomic actions. Moreover, we have shown that for
CTL and LTL the requirements on the semantic algebra can be relaxed to that of
a modal omega or convergence algebra an even just a modal Kleene algebra, resp.

Future research will concern use of the algebraic semantics for concrete cal-
culations in case studies as well the extension from the current propositional
case to the first-order one; for this Tarskian frames as introduced in [16] seem a
promising candidate.

Acknowledgements. We are grateful to the anonymous referees and to Kim
Solin for valuable comments and remarks.
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13. P. Höfner, B. Möller, K. Solin: Omega Algebra, demonic refinement algebra and

commands. Proc. 9th RelMiCS/4th AKA 2006 (to appear)
14. D. Kozen: A completeness theorem for Kleene algebras and the algebra of regular

events. Information and Computation 110:2, 366–390 (1994)
15. D. Kozen: Kleene algebras with tests. ACM TOPLAS 19, 427–443 (1997)
16. D. Kozen: Some results in dynamic model theory. Science of Computer Program-

ming 51, 3–22 (2004)
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Appendix: Proof of Theorem 7.2

The proof is again by induction on the structure of the state formulas. The cases
(a)–(c) of ⊥, p and ϕ → ψ have already been covered in the proof of Theorem 6.1.

(d) Using again Theorem 6.1, the definition of [[ ]], (2) and the definitions again,
we calculate [[EXϕ]]d = �[[Xϕ]] = �(n · [[ϕ]]) = �(n · �[[ϕ]]) = 〈n〉[[ϕ]]d.
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(e) By Theorem 6.1(c) and Lemma 3.2(b), definition and Theorem 6.1, by (6),
by Lemma 3.2(b), domain property, and the definition:

[[AXϕ]]d =¬�[[Xϕ]] =¬�n · [[ϕ]]d · *=¬�(n · [[ϕ]]d · *)=¬�(n · ¬[[ϕ]]d · *)=
¬�(n · ¬[[ϕ]]d)= [n][[ϕ]]d.

Moreover, [[ϕ]]d = [[Aϕ]]d follows from Lemma 7.1.
(f) Assume [[ϕ]] = p · *. By the definition of A and the explicit representation

of F from Corollary 4.2 we obtain [[AFϕ]] = ¬�n∗ · p · * · *. Now the claim
follows from the shunting rule of Lemma 6.2(b) and the definition of [[ ]]d.

(g) For [[E(ϕUψ)]] we use the principle of least-fixpoint fusion [1]: If h preserves
arbitrary joins and h ◦ f = g ◦ h then h(μf) = μg.
Set, for abbreviation, p =df [[ϕ]]d and q =df [[ψ]]d. Then, by Lemma 4.1 and
Lemma 3.2(c), u =df [[ϕUψ]] = μf where f(y) =df q ·*+(p ·n ·y). Second,
by Theorem 6.1 and (5), 〈(p · n)∗〉 = μg where g(p) =df q + 〈(p · n)〉p. We
need to show �(μf) = μg. By the principle of least-fixpoint fusion this is
implied by � ◦ f = g ◦ �, since � preserves arbitrary joins. We calculate: By
definition f , additivity of domain, Lemma 3.2(a), by (2), definition diamond,
and definition g:

�(f(y))= �(q · *+ (p · n · y))= �(q · *) + �(p · n · y))= q + �(p · n · y)=
q + �(p · n · �y)= q + 〈p · n〉 · �y = g(�y).

(h) For r =df [[A(ϕUψ)]] we use that, by Theorem 6.1(c), r = ¬�u, where u =df
[[ϕUψ]]. Let, for abbreviation, p ·* =df [[ϕ]] and q ·* =df [[ψ]]. Since u = μf

where f(y) = q · * + p · n · y, we have u = νf◦. By the definitions, de
Morgan, Lemma 3.2(e), Lemma 3.2(c) and de Morgan, Lemma 3.2(e) and
(6), complement, distributivity, and de Morgan:

f◦(y)= q · *+ p · n · y = q · * � p · n · y =¬q · * � p · * � n · y
=¬q · (p · *+ n · y)=¬q · (¬p · *+ n · y)=¬q · (¬p · *+ n · y)

=¬q · ¬p · *+ ¬q · n · y =¬(p + q) · *+ ¬q · n · y.

By the above, (3), distributivity and de Morgan, Lemma 6.2 (b) and a do-
main property, Theorem 6.1(c) and definition of box, and Lemma 4.2:

r

= ¬�(νf◦)
= ¬�((¬q · n)ω + (¬q · n)∗ · ¬(p + q) · *)
= ¬�((¬q · n)ω) · ¬�((¬q · n)∗ · ¬(p + q) · *)
= ¬�(n∗ · q · *) · ¬�((¬q · n)∗ · ¬(p + q))
= A(n∗ · q · *) · [(¬q · n)∗](p + q)
= (AFq) · [(¬q · n)∗](p + q).
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1 / 0

z := x ; (x := y ; y := z)
(x #→ 1,y #→ 2,z #→ 0)

0 #→ 〈(x #→ 1,y #→ 2,z #→ 0) | [z := x ; (x := y ; y := z)]〉 ,
1
2 #→ 〈(x #→ 1,y #→ 2,z #→ 1) | [x := y ; y := z]〉 ,
3
4 #→ 〈(x #→ 2,y #→ 2,z #→ 1) | [y := z]〉 ,

1 #→ 〈(x #→ 2,y #→ 1,z #→ 1) | [ε]〉 .

W = while z > 0 do z := z - 1

0 #→ 〈(x #→ 1,y #→ 2,z #→ 0) | [z := x ; (W ; y := z)]〉 ,
1
2 #→ 〈(x #→ 1,y #→ 2,z #→ 1) | [W ; y := z]〉 ,
5
8 #→ 〈(x #→ 1,y #→ 2,z #→ 1) | [(z := z - 1 ; W ) ; y := z]〉 ,
11
16 #→ 〈(x #→ 1,y #→ 2,z #→ 0) | [W ; y := z]〉 ,
3
4 #→ 〈(x #→ 1,y #→ 2,z #→ 0) | [y := z]〉 ,

1 #→ 〈(x #→ 1,y #→ 0,z #→ 0) | [ε]〉 .



Var
Proc
Expr
Stmt
Decl

Stmt → Var := Expr
| if Expr then Stmt else Stmt
| while Expr do Stmt
| call Proc(Expr, . . ., Expr)
| Stmt ; Stmt
| ε

Decl → proc Proc(Var, . . . , Var) is Stmt
| Decl ; Decl
| ε

∀S ∈ Stmt (ε ; S = S = S ; ε)
∀D ∈ Decl (ε ; D = D = D ; ε)

;
ε
ε ;

Val
tt ff State = Var → Val

⊥

⊥ ⊥
⊥ ⊥ ⊥

f x v f [x #→ v]
f x v

x1, . . . , xn v1, . . . , vn

f [∀i xi #→ vi] f xi



Act = State → State
Env = Proc → (Val ∗ → Act)

W E,T ∈ Act → (Act → Act)
P D ∈ (Env → Env) → (Env → Env)

E ∈ Expr → (State → Val )
S ∈ Stmt → (Env → Act)
C ∈ Decl → (Env → Env)
D ∈ Decl → (Env → Env)

W E,T (h)(g )(s) = g (h(s)) E (E)(s) = tt
s

P D(g ) = g ; C(D)

S(X := E)(e)(s) = s[X �→ E(E)(s)]

S(if E then T1 else T2)(e)(s) = S(T1)(e)(s) E(E)(s) = tt
S(T2)(e)(s)

S(while E do T )(e) = fix(W E,T (S(T )(e)))
S(call P(E1, . . ., En))(e)(s) = e(P )(E(E1)(s), . . . , E(En)(s))(s)
S(T1 ; T2)(e) = S(T1)(e) ; S(T2)(e)
S(ε)(e) = id

C(proc P(X1, . . ., Xn) is S)(e)
= e[P �→ λ(v1, . . . , vn). λs. S(S)(e)(s[∀i Xi �→ vi])[∀i Xi �→ s(Xi)]]

C(C1 ; C2) = C(C1) ; C(C2)
C(ε) = id

D(D) = fix P D

vi ⊥ λ
; id

E

E
fix G G

⊥

fix



κ
*

⊥
⊥ *

κ κ
State = Var → Val Val + *

*

Eκ

Conf
PP Conf = State×PP

s p 〈s | p〉
st〈s | p〉 = s st⊥ = ⊥ pp〈s | p〉 = p pp⊥ = ⊥ c ∼ ⊥ st c = ⊥
pp c = ⊥ c ∼ ⊥

PP = List Stmt List A
A nil

a ∈ A l ∈ List A a : l a
l :

⊥ ⊥ : hd ∈ List A → A
⊥

⊥
|l| l p ∈ PP

T ∈ Stmt p ; T
p T ;

p ; T =
{

(S ; T ) : q p = S : q
p

}
.

κ
κ



Traceκ

single
κ

∈ Conf → Traceκ

consκ ∈ Conf × Traceκ → Traceκ

snocκ ∈ Traceκ × Conf → Traceκ

hdκ ∈ Traceκ → Conf
dhκ ∈ Traceκ → Conf
brzκ ∈ Traceκ × Traceκ → Traceκ

map
κ

∈ (Conf → Conf ) → (Traceκ → Traceκ)

wrapL
κ ⊥

⊥ liftκ

W E,T
κ

P D
κ

snocσ

brzσ ⊥

mapσ map

Q a, b ∈ Q a  b
[a; b] r ∈ Q a  r  b A ��� B

A B dom f
f



Actκ = State → Traceκ

Envκ = Proc → (Val ∗ → Actκ)

wrapL
κ

∈ State → (Traceκ → Traceκ)
liftκ ∈ Actκ → (Traceκ → Traceκ)
W E,T

κ ∈ Actκ → (Actκ → Actκ)
P D

κ ∈ (Envκ → Envκ) → (Envκ → Envκ)

Eκ ∈ Expr → (State → Val )
Sκ ∈ Stmt → (Envκ → Actκ)
Cκ ∈ Decl → (Envκ → Envκ)
Dκ ∈ Decl → (Envκ → Envκ)

wrap(E1,...,En)
κ

s l =
l ∀i (Eκ(Ei)(s) = ⊥)
single

κ
〈s | ⊥〉

liftκ g l
= brzκ(map

κ
(λ〈u | p〉. 〈u | p ; hd(pp(hdκ(g (st(dhκ l)))))〉) l, g (st(dhκ l)))

W E,T
κ (h)(g )(s)

= consκ(〈s | [while E do T ]〉, wrap(E)
κ

s
liftκ g (h(s)) Eκ(E)(s) = tt
single

κ
〈s | [ε]〉 )

P D
κ (g ) = g ; Cκ(D)

Sκ(X := E)(e)(s)
= consκ(〈s | [X := E]〉, wrap(E)

κ
s(single

κ
〈s[X �→ Eκ(E)(s)] | [ε]〉))

Sκ(if E then T1 else T2)(e)(s)
= consκ(〈s | [if E then T1 else T2]〉,

wrap(E)
κ

s
Sκ(T1)(e)(S) Eκ(E)(s) = tt
Sκ(T2)(e)(S)

)

Sκ(while E do T )(e) = fix(W E,T
κ (Sκ(T )(e)))

Sκ(call P(E1, . . ., En))(e)(s)
= consκ(〈s | [call P(E1, . . . , En)]〉,

map
κ

(λ〈u | p〉. 〈u | ε : p〉)(wrap(E1,...,En)
κ

s(e(P )(Eκ(E1)(s), . . . , Eκ(En)(s)))(s)))
Sκ(T1 ; T2)(e) = Sκ(T1)(e) ; liftκ(Sκ(T2)(e))
Sκ(ε)(e)(s) = single

κ
〈s | [ε]〉

Cκ(proc P(X1, . . ., Xn) is S)(e)
= e[P �→ λ(v1, . . . , vn). λs. snocκ(t, 〈st(dhκ t)[∀i Xi �→ s(Xi)] | nil〉)]

t = Sκ(S)(e)(s[∀i Xi �→ vi])
Cκ(C1 ; C2) = Cκ(C1) ; Cκ(C2)
Cκ(ε) = id

Dκ(D) = fix P D
κ



Traceσ = List Conf \ {nil}
single

σ
c = [c]

consσ(c, l) = c : l c ∼ ⊥
[c]

hdσ l = hd l

dhσ l = dn l = [d1, . . . , dn]
⊥

snocσ(l, c) = [d1, . . . , dn, c] l = [d1, . . . , dn] dn ∼ ⊥
l

brzσ(l1, l2) =
d1 : . . . : dn−1 : l2 dhσ l1 = hdσ l2

⊥ l1 = [d1, . . . , dn] dn ∼ ⊥
l1

map
σ

f (d1 : . . . : dn : l) = f (d1) : . . . : f (dn) : l l ∈ {nil, ⊥}
map

σ
f [d1, d2, . . .] = [f (d1), f (d2), . . .]

Traceϕ = {l ∈ [0; 1] ��� Conf | 0 ∈ dom l ∧ ((∃r > 0 (r ∈ dom l)) ⇒ 1 ∈ dom l)}
single

ϕ
c = (0 �→ c) consϕ(c, l) = (0 �→ c) ∪ right l

snocϕ(l, c) = left l ∪ (1 �→ c)
hdϕ l = l(0)

dhϕ l = l(1) 1 ∈ dom l
l(0)

brzϕ(l1, l2) =
left l1 ∪ right l2 1 ∈ l1 ∧ 1 ∈ l2

l1 ∪ right l2 1 ∈ l1 ∧ 1 /∈ l2

l1 ∪ l2

map
ϕ

f l = l ; f

l ∈ [0; 1] ��� Conf
r ∈ dom l l(r) r

Traceϕ

0
1

0 1 a, b ∈ Q a  b Tracea,b
ϕ =

{f ∈ [a; b] ��� Conf | a, b ∈ dom f} Traceϕ = Trace0,1
ϕ ∪ Trace0,0

ϕ

(a #→ x) Tracea,a
ϕ

a x left, right f ∈ [a; b] ��� Conf
dom f = ∅

left f =
{

(0 #→ elem f ) |dom f | = 1
(λr. 2r) ; f

}
,

right f =
{

(1 #→ elem f ) |dom f | = 1
(λr. 2r − 1) ; f

}

elem f f
left f right f f ∈ Traceϕ [0; 1

2 ]



[ 1
2 ; 1]

a, b, c, d ∈ Q 0  a  b  c  d  1 f ∈ Tracea,b
ϕ g ∈ Tracec,d

ϕ

f (b) ∼ ⊥ b = c f (b) = g(c) f ∪ g ∈ Tracea,d
ϕ ∪

Tracea,a
ϕ

dom(f ∪ g) =

⎧⎨
⎩

dom f ∪ dom g f (b) ∼ ⊥
(dom f \ {b}) ∪ {d} f (b) ∼ ⊥ ∧ a = b
{a}

⎫⎬
⎭ ⊆ dom f ∪ dom g ,

∀r ∈ dom(f ∪ g)

⎛
⎝(f ∪ g)(r) =

⎧⎨
⎩

f (r) r ∈ dom f
g(r) r /∈ dom f ∧ f (b) ∼ ⊥
f (b)

⎫⎬
⎭
⎞
⎠ .

f
f [a; d] f

x := 1 / 0
(x #→ 1,y #→ 2,z #→ 0)

0 #→ 〈(x #→ 1,y #→ 2,z #→ 0) | [z := x ; (x := 1 / 0 ; y := z)]〉 ,
1
2 #→ 〈(x #→ 1,y #→ 2,z #→ 1) | [x := 1 / 0 ; y := z]〉 ,

1 #→ 〈(x #→ 1,y #→ 2,z #→ 1) | ⊥〉 .

⊥
1 3

4∪

fix

∪

G =
{

g ∈ Actϕ | st(hdϕ(g (s))) = s ∧ |pp(hdϕ(g (s)))| = 1
}

Act+
ϕ =

{
g ∈ G | dhϕ(g (s)) ∼ ⊥ ⇒ pp(dhϕ(g (s))) = [ε]

}
,

Env◦
ϕ = Proc → (Val∗ →

{
g ∈ G | dhϕ(g (s)) ∼ ⊥ ⇒ pp(dhϕ(g (s))) = nil

}
) .

Act+
ϕ

Actϕ Env◦
ϕ Envϕ ∪

liftϕ
∪

g , h ∈ Act+
ϕ s ∈ State liftϕ g (h(s))



Traceδ = Conf

single
δ
c = c consδ(c, d) = snocδ(c, d) = brzδ(c, d) = d c ∼ ⊥

c
hdδ c = dhδ c = c map

δ
f c = f (c)

t = st(dhϕ(h(s))) , k = map(λ〈u | p〉. 〈u | p ; hd(pp(hdϕ(g (t))))〉)(h(s)) .

dhϕ k = hdϕ(g (t)) dhϕ k ∼ ⊥

⊥ ∼ dhϕ k = (λ〈u | p〉. 〈u | p ; hd(pp(hdϕ(g (t))))〉)(dhϕ(h(s)))
= 〈t | pp(dhϕ(h(s))) ; hd(pp(hdϕ(g (t))))〉 .

t = ⊥ dhϕ(h(s)) ∼ ⊥ g ∈ Act+
ϕ pp(hdϕ(g (t))) = [S]

S ∈ Stmt h ∈ Act +
ϕ

pp(dhϕ k) = pp(dhϕ(h(s))) ; hd(pp(hdϕ(g (t)))) = [ε] ; S = [S] .

dhϕ(k) = 〈t | [S]〉 = hdϕ(g (t)) ��

fix

W E,T
ϕ

x, y W E,T
ϕ (h) s x(s) y(s)

1

(ci : i ∈ IN) v ∀i � n (ci = v)
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Abstract. This paper proposes a modal extension of Separation Logic [1, 2] for
reasoning about data-parallel programs that manipulate heap allocated linked data
structures. Separation Logic provides a formal means for expressing allocation of
disjoint substructures, which are to be processed in parallel. A modal operator
is also introduced to relate the global property of a parallel operation with the
local property of each sequential execution running in parallel. The effectiveness
of the logic is demonstrated through a formal reasoning on the parallel list scan
algorithm featuring the pointer jumping technique.

1 Introduction

Parallel prefix or scan on arrays is a fundamental collective operation in parallel com-
puting [3, 4]. For example, the parallel prefix sum algorithm computes the sums of
prefix subsequences of an integer array. The prefix computation can be efficiently im-
plemented on parallel computers, where the basic technique is simultaneous addition
of array elements at indices of exponentially increasing intervals. The same technique
applies to implement a range of parallel algorithms including parallel sorting, maxi-
mum segment sum, etc. A data-parallel programming paradigm is best suited for the
implementation, where the same sequential program processes every different array ele-
ment simultaneously, as attributed by the SPMD (single program, multiple data-stream)
execution scheme [5].

A similar but more sophisticated programming technique can even implement par-
allel collective operations on linked data structures, e.g., lists and trees. The program
in Figure 1 implements a data-parallel scan operation on integer list that computes the
sum of every sublist, where the integer list is expressed by a linked structure. Each cons
cell allocates an integer value in the head position and a pointer to the successor cell (or
a special value nil when there is no successor cell) in the tail position.

The programming technique employed in the program is called pointer jumping
[3, 6]. As depicted in Figure 1, in each step of parallel execution, the tail position in
every cons cell is updated with the value contained in the tail position of the successor
cell and also the integer value in the head position is added with that in the successor
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(* p is a pointer to the initial cell of the list *)
q := [p+1];
while q = nil do

begin
forall x #→ n,t in 〈allocation addresses of list cells〉 do

begin var m;
if t = nil then m := [t]; t := [t +1]; [x] := n+m; [x+1] := t

end;
q := [p+1]

end

Initial

1st iteration

2nd iteration

3rd iteration

1 1 1 1 1 1 1

2 2 2 2 2 2 1

4 4 4 4 3 2 1

4 3 2 1567

Fig. 1. Data-parallel list scan algorithm

cell. Every single step of parallel execution is expressed in the program by a data-
parallel primitive, the forall command. In the program, the forall command executes
the command body for every different cons cell in parallel, with x bound to the alloca-
tion address of the cons cell and n and t bound to values stored in the head part and the
tail part of the cell, respectively. In the command body, [p] stands for dereferencing of a
pointer p, [p+1] for dereferencing with displacement 1, and the command [e] := e′ up-
dates the address e with the value of e′. The iteration is terminated as soon as the tail po-
sition of the initial cell has been set to nil. It is easy to see that the iteration requires only
a logarithmic number of steps, since the length of pointers is doubled per each iteration.

This paper proposes a program logic, in the style of Hoare, for verifying such data-
parallel programs implementing a collective operation on linked data structure, on top
of a formal semantics of a suitable data-parallel programming language.

So far several formal semantics have been proposed for data-parallel programming
languages (e.g., [7, 8, 9]). The most prospective for our purpose would be the assertional
approach by Bougé et al. [7]. However, they only deal with arrays as the primary data
structure for parallel processing. Thus pointer jumping is expressed with indirection
of interpreting pointers as array indices. This is not merely a notational issue. More
significantly, it obfuscates the logical structure of the program, by having the formal
reasoning stick to particular properties of integer arithmetics.

Our formal proof system for verification deals with a data-parallel programming
language in which pointers are first-class citizens. Pointer operations are notoriously
hard to reason about, even in sequential programs. We solve the difficulty by adopting
Separation Logic [1, 2], which has been recently developed for compositional reasoning
on pointer manipulating programs.

As we shall discuss later, parallel list scan instantiates the divide-and-conquer strat-
egy, where a data set is decomposed into disjoint subcomponents that are subject to
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successive parallel processing. The parallel processing of subcomponents is guaranteed
safe, as disjointness implies non-interference among parallel threads of sequential exe-
cution. Separation Logic allows us to express this property of the program in a notably
elegant way.

In addition to the standard features of Separation Logic, we extend it with a modal
operator, expressing modal possibility up to alteration of the heap contents. (Although
our modal operator is much alike Berger, Honda, and Yoshida’s content quantification
[10], ours has a fundamental difference from theirs: theirs takes care of a single address,
while ours mentions about the entire set of allocation addresses of the current heap.)
The modal operator provides a logical means for relating the global property of the
execution of a forall command with the property local to every sequential execution
running in parallel.

The rest of the paper is organized as follows. Section 2 introduces Separation Logic
with a modal extension. Section 3 informally explains the logical structure of parallel
list scan algorithm and interprets it into a formal specification in Separation Logic. In
Section 4, we give a formal definition of the data-parallel programming language and a
sound proof system for it. Section 5 gives a formal correctness proof for the parallel list
scan. Finally, Section 6 concludes the paper.

2 The Assertion Language of Separation Logic with Modality

This section gives the formal definition of the syntax and semantics of the assertion
language of Separation Logic extended with modality. Separation logic extends first-
order logic with assertions for mentioning about heap storage. We assume a shared
memory model for the heap storage, where a single global memory space is shared
among all parallel execution instances.

Given a partial function f , let us write f [x1 #→ v1, . . . ,xn #→ vn] for a partial func-
tion g such that dom(g) = dom( f )∪{x1, . . . ,xn}, g(xi) = vi for every i, and g(y) = f (y)
for every y ∈ dom( f ) \ {x1, . . . ,xn}. We write f � g to mean that f and g have dis-
joint domains. We also write f ∗ g for the disjoint union of the two functions, if f � g;
f ∗ g is undefined otherwise. Sometimes we represent a partial function f by its graph
{(x, f (x)) | x ∈ dom( f )}. The notation f � A expresses a restriction of f to a set A, i.e.,
f �A = {(x, f (x)) | x ∈ dom( f )∩A}.

Let Var be a set of of variables. We define the set Val of values as the set of integers
and the set Addr of addresses as the set of non-negative integers, hence Addr⊆ Val.

Our formal model of storage consists of two semantic domains, store and heap:

Store = Var → Val Heap = Addr⇀fin Val State = Store×Heap.

A store is a total mapping from variables to values. A heap is a finite partial mapping that
associates each address with its content. The state of the entire storage is represented
by a pair of a store and a heap.

The syntax of the assertion language is given below.

e ::= 〈integers〉 | nil | x | e + e (expressions)

P ::= true | false | e = e | ¬P | P∨P | P∧P | ∃x.P | ∀x.P | P ⇒ P

| emp | e #→ e | P∗P | P ∗ P |�P
(assertions)
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An expression e is either an integer value, a constant symbol nil, a variable, or a
sum of integers. We assume the symbol nil stands for a non-address value. In addition
to the standard connectives of first-order logic, the assertion language provides several
separating connectives and a modality. We write FV(P) for the set of free variables, i.e.,
variables whose occurrence in P is not in the scope of any enclosing quantifier.

Given (s,h) ∈ State, the interpretation of assertions is defined as below. Let us write
[[e]]s to denote the value of expression e interpreted under the store s. We define the judg-
ment s,h |= P as follows. (The interpretation of the remaining connectives is standard
and is omitted for the lack of space.)

s,h |= emp iff dom(h) = /0.

s,h |= e #→ e′ iff [[e]]s ∈ Addr and h = {([[e]]s, [[e′]]s)}.
s,h |= P∗Q iff h = h1 ∗h2, s,h1 |= P, and s,h2 |= Q for some h1, h2.

s,h |= P ∗ Q iff h �h′ and s,h′ |= P implies s,h ∗h′ |= Q, for all h′.
s,h |= �P iff dom(h) = dom(h′) and s,h′ |= P for some h′.

The assertion emp indicates an empty heap that allocates no contents yet. Points-to
relation e #→ e′ indicates a singleton heap, which allocates a single content e′ at the
address e. Separating conjunction P ∗Q holds for the current heap h iff there exists a
disjoint separation of the heap h = h1 ∗ h2 such that P holds for h1 and Q holds for h2.
Separating implication P ∗Q says that Q holds up to any expansion of the current heap
that satisfies P. The modal operator is new to this paper. The assertion �P means that
the assertion P can be made true by appropriately changing currently allocated values.

Here we introduce some notational conventions. We write e #→ e1,e2, . . . ,en for (e #→
e1) ∗ (e + 1 #→ e2) ∗ · · · ∗ (e + n− 1 #→ en) (n ≥ 1), namely, a block of size n allocating
values e1, . . . ,en at consecutive addresses starting from e. Inexact variant of points-
to relation e ↪→ e1, . . . ,en abbreviates e #→ e1, . . . ,en ∗ true, which indicates that the
current heap at least contains the allocation as expressed by e #→ e1, . . . ,en. A symbol−
in the right hand side of #→ or ↪→ stands for an existentially quantified variable, e.g.,
x #→ 1,−,− for ∃yz.x #→ 1,y,z. Throughout the paper, we assume that ∗ binds more
tightly than ∧; we follow the usual convention on the precedence of bindings for other
connectives.

We also consider the following subclasses of assertions.

– An assertion P is called pure if it is independent to heap, that is, s,h |= P implies
s,h′ |= P for any h′. Syntactically, any assertion is pure if it is free from assertions
and connectives that are affected by heap, i.e., emp, ∗, ∗, #→, and �.

– An assertion P is called precise if, for any store s and heap h, there exists at most
one subheap h′ such that h′ ⊆ h and s,h′ |= P. Assertions which are built from
logical expressions only using emp, ∗, �, e #→ e′, and e #→− form a conservative
subclass of precise assertions.

– An assertion P is called strictly exact if P determines at most one heap, that is, for
any store s and heaps h,h′, s,h |= P and s,h′ |= P implies h = h′. Any assertion that
is built from logical expressions only using emp, ∗, and e #→ e′ is strictly exact.

Obviously any strictly exact assertion is precise.

Some logical properties of the assertion language will be given later in Section 5.
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3 Specifying Parallel List Scan

A large body of parallel algorithms can be explained as an instance of the divide-
and-conquer strategy, where a problem is divided into subproblems of smaller
sizes and solutions to the subproblems later combine to give the final solution. The
strategy merits parallel implementation, as disjoint subproblems can be safely solved in
parallel.

3.1 An Informal Description of the Correctness of Parallel Scan

Fig. 2a. Odd-even list partitioning

Fig. 2b. Iterated partitioning

Let us show that the data-parallel list scan
algorithm is another instance of divide-and
conquer. Figure 2a gives a graphical presen-
tation of a single step of pointer jumping on
a linked list. The figure indicates that a sin-
gle step of pointer jumping corresponds to
an odd-even partitioning of the list: the par-
allel operation splits the list into two dis-
joint sublists, one consisting of cells sitting
at odd positions of the original list and the
other consisting of cells sitting at even posi-
tions. Successive execution of parallel pointer
jumping simultaneously operates on the par-
titioned sublists, further splitting each sublist
into two disjoint smaller sublists. The itera-
tion continues until the original list is decom-
posed into a set of singleton lists (Figure 2b).

Note that the iteration respects the follow-
ing loop invariant: “Each iteration preserves
the sum of integers reachable from every cons cell.” This invariant implies that, when
the program terminates, every cons cell holds the sum of all the integer values reachable
from that cell in the original list. Thus, we obtain the list scan.

3.2 Formal Specification in Separation Logic

In the rest of this section, we express a formal specification of the properties dis-
cussed above in Separation Logic. We give a specification of program in Hoare’s par-
tial correctness assertion form, written {P}C{Q} , which means that, for any state
satisfying the precondition P, the program C safely executes without errors such
as memory faults and, if it ever terminates, it ends up with a final state satisfying the
postcondition Q.

Let us write [] to stand for an empty sequence of values and a :: � for a sequence
beginning with a value a followed by a sequence �. We also abbreviate a1 :: (a2 :: (· · · ::
[]) · · · ) by [a1,a2, . . . ,an]. In what follows, we use meta-variables τ,τ′, . . . to range over
sequences of integers and σ,σ′, . . . over sequences of addresses.
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Let us define a few predicates for sequences.

– part(σ,σ1,σ2) iff either σ = σ1 = σ2 = [] or σ = [p1, p2, . . . , pk], σ1 = [p1, p3, . . . ,
p2- k−1

2 .+1], and σ2 = [p2, p4, . . . , p2- k
2 .] (k ≥ 1).

– alts(τ,τ1,τ2) iff either τ = τ1 = τ2 = [] or τ = [n1,n2, . . . ,nk], τ1 = [ρ(1),ρ(3), . . . ,
ρ(2- k−1

2 .+ 1)], and τ2 = [ρ(2),ρ(4), . . . ,ρ(2- k
2.)], where ρ(k) = nk and ρ(i) =

ni + ni+1 when 0≤ i≤ k−1 (k ≥ 1).
– sum(τ,m) iff τ = [n1,n2, . . . ,nk] and m = ∑k

i=1 ni (k≥ 0).

The predicate part(σ,σ1,σ2) gives the result of odd-even partitioning of the se-
quence σ in σ1 and σ2, the odd part and the even part, respectively; alts(τ,τ1,τ2)
indicates that τ1 (τ2, resp.) is the integer sequence obtained by adding every odd (even,
resp.) element in the sequence τ with its successor element; sum(τ,n) gives the sum of
integer sequence τ in n. Figure 3 lists some properties relevant to these predicates.

part(σ, [],σ2)⇔ σ = σ2 = [] (3.1)

alts(τ, [],τ2)⇔ τ = τ2 = [] (3.2)

alts([n],τ1,τ2)⇔ τ1 = [n]∧ τ2 = [] (3.3)

part(n :: σ,m :: σ1,σ2)⇔ n = m∧part(σ,σ2,σ1) (3.4)

alts(n :: m :: τ,n′ :: τ1,τ2)⇔ n′ = n+m∧alts(m :: τ,τ2,τ1) (3.5)

alts(τ,τ1,τ2)∧sum(τ,n)⇔ alts(τ,τ1,τ2)∧sum(τ1,n) (3.6)

Fig. 3. Properties of sequences

We define assertion R(i, p,σ,τ) to indicate the heap state when the i-th iteration of
pointer jumping has just finished, where p is the pointer to the initial cell of the list and
σ and τ are the sequences of allocation addresses and integer values of the original list,
respectively. The inductive definition1 of the assertion is given below.

R(i, p, [], []) � i≥ 0∧ p = nil∧ emp

R(0, p,r :: σ,n :: τ) � p = r∧∃q.(p #→ n,q ∗R(0,q,σ,τ))

R(i, p,r :: σ,n :: τ) � i > 0∧ p = r∧ (R(i−1, p,σ1,τ1)∗∃q.R(i−1,q,σ2,τ2))
where part(r :: σ,σ1,σ2) and alts(n :: τ,τ1,τ2).

When i = 0, the assertion represents a non-circular, heap allocated linked list struc-
ture [1]. When i > 0, the assertion indicates that the heap allocates two disjoint sublists,
the odd part R(i−1, p,σ1,τ1) and the even part R(i−1,q,σ2,τ2), where each sublist is
further partitioned i−1 times more.

We also define assertion Πn(σ) (n≥ 1), whose inductive definition is given by:

Πn([]) � emp Πn(p :: σ) � ∃x1 · · ·xn.p #→ x1, . . . ,xn ∗Πn(σ).

1 Though the present assertion language does not formally include inductive definitions, it would
be extended with fixed point operators as in [11].
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The assertion Πn(σ) indicates that the heap allocates non-overlapping blocks of the
same size n at addresses as listed in σ.

The properties about the program given in Figure 1 that we have informally discussed
above can be specified as follows.

Proposition 1. Let Cforall and Cwhile denote the command bodies of the forall and while
command of the program in Figure 1, respectively. Then the following properties hold.

(a) {R(i, p,σ,τ)} forall x #→ n, t in σ do Cforall {R(i+ 1, p,σ,τ)}
(b) {∃i.R(i, p,σ,w) ∧ p + 1 ↪→ q}while q = nil do Cwhile {∃i.R(i, p,σ,w) ∧ p + 1 ↪→

q∧q = nil}
(c) R(i, p, p1 :: σ,n1 :: τ)∧ p + 1 ↪→ nil ⇒ ∃q.(R(i,q,σ,τ)∧ (q = nil∨ q + 1 ↪→ nil)) ∗

(p = p1∧ p ↪→ n,nil), whenever sum(n1 :: τ,n).

The specification (a) indicates that every single execution of the forall command cor-
responds to a single step of parallel pointer jumping. The specification (b) identifies
∃i.R(i, p,σ,w)∧ p + 1 ↪→ q as the loop invariant. The implication (c) indicates that the
invariant property on the sum of integers discussed earlier is intrinsic to the definition
of R(i, p,σ,τ).

4 Program Logic for a Data-Parallel Programming Language

We consider a simple data-parallel programming language as given below:

b ::= true | false | e = e | ¬b | b∨b | b∧b

C ::= x := e | x := [e] | [e] := e′ | skip |C;C | begin var x; C end

| if b then C else C | while b do C | forall x #→ y1, . . . ,yn in σ do C (n ≥ 0)

where meta-variable e ranges over the set of expressions and σ in the forall command
over the set of non-empty sequences of address constants.

The language consists of the following components. Assignment command x := e
updates the variable x by the value of the expression e; Lookup command x := [e] as-
signs x with the dereferenced value of the address e; Mutation [e] := e′ updates the
content at the address e by the value of e′; The command skip does no operation. These
atomic commands are composed via sequencing C1; C2, block structures begin · · ·end
with local variable declaration, conditionals, while loops, and the forall primitive for
parallel execution. As usual, if b then C abbreviates if b then C else skip.

We write FV(C) for the set of free variables in C, i.e., variables which are not in
the scope of local variable declaration of a block structure or a parallel command. We
also write MD(C) to denote the set of free variables which can be updated by a vari-
able assignment, i.e., variables that have a free occurrence of the form x := · · · in C.
We assume that, for every parallel command forall x #→ y1, . . . ,yn in σ do C, MD(C)⊆
{x,y1, . . . ,yn}.

We give the formal semantics of this language in the style of big-step operational
semantics that derives an evaluation relation either of the form (s,h),C � (s′,h′) or
(s,h),C � abort. The former indicates that the command C with initial state (s,h)
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(s,h),x := e � (s[x #→ [[e]]s],h)
[[e]]s ∈ dom(h)

(s,h),x := [e] � (s[x #→ h([[e]]s)],h)

[[e]]s ∈ dom(h)
(s,h), [e] := e′ � (s,h[[[e]]s #→ [[e′]]s])

(s,h),C � (s′,h′)
(s,h),begin var x;C end � (s′[x #→ s(x)],h′)

MD(C)⊆ {x,y1, . . . ,yn} σ = [p1, . . . , pm] (m≥ 1) h = h′ ∗h′′
h′ = h′1 ∗ · · · ∗h′m dom(h′i) = {pi +d | 0≤ d ≤ n−1} for every i ∈ {1, . . . ,m}

(s[x #→ pi,y1 #→ h′(pi), . . . ,yn #→ h′(pi +n−1)],h′),C � (si,h′′i ) for every i ∈ {1, . . . ,m}
(s,h), forall x #→ y1, . . . ,yn in σ do C � (s, m

i=1{(pi +d,h′′i (pi +d)) | 0≤ d ≤ n−1}∗ h′′)

Fig. 4. Operational semantics of the data-parallel programming language

ends up with a final state (s′,h′), while the latter stands for an execution aborted by
an error.

Figure 4 gives derivation rules for a part of commands, where the notation [[e]]s de-
notes the result of evaluating the expression e under the store s. We omitted standard
rules for other commands and the rules that lead to abort. A program can be aborted
either by a memory fault (via a lookup or a mutation into a non-allocated address) or
by an underallocation in the execution of forall, i.e., the heap allocates fewer addresses
than the required set σ of addresses designated in the forall command.

In the execution of the command forall x #→ y1, . . . ,yn in σ do C, the command body
C is simultaneously evaluated for every different address x taken from a fixed finite set
of heap addresses explicitly given by σ. (In practice, σ could be automatically derived
from, say, a reference name to a collection of heap allocated data, in a suitable extension
of the present language.) Every different execution of the command body is in charge
of updating the contents allocated in a contiguous block of size n starting from the
address x, with y1, . . . ,yn bound to the values stored in the block. The condition h′ =
h′1 ∗ · · · ∗ h′m in the premise of the operational semantics requires that the allocation
addresses of different blocks do not overlap. The variables x,y1, . . . ,yn are local to each
execution instance; their variable assignments will be restored to the original ones, upon
termination of the parallel execution.

In order to avoid inconsistencies that may arise by concurrent writes to the shared
heap memory, we assume that every execution instance of a parallel command oper-
ates on its own local copy of the entire store and the heap blocks subject to the parallel
processing. Every instance is allowed to read and write the local copy of the storage, ex-
cept that global variables are read only. However, the effect of updates is only reflected
to the local copy and is not accessible from other instances during parallel execution.
Upon termination of the parallel execution, the store is restored to the original one and
the contents of every heap block are updated to those of the local copy of the cor-
responding block held in the associated execution instance; the contents of irrelevant
blocks in the local copy of each execution instance are discarded.

To summarize, an update to the heap is meaningful only if the updated address be-
longs to the block associated with the instance that executes the update. We also note
that no execution instance can change the heap domain, as the language does not include
commands for heap allocation and deallocation. There are many data-parallel programs
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that do not adhere to this limited set of heap operations, of course. However, the primary
goal of this paper is to develop a formal proof system that gives a clear logical account
for pointer jumping, a common programming technique in parallel computing. We pre-
sumed this reduced pattern of heap operations for the sake of a simpler specification of
the parallel command.

4.1 Hoare Logic for Data-Parallelism

We define a specification {P}C{Q} is valid iff (s,h),C � (s,h′) implies s′,h′ |= Q, for
all (s,h),(s′,h′) ∈ State satisfying s,h |= P,

The inference rules for deriving valid specifications are given in Figure 5. The upper
half of the figure consists of the rules for commands. Most of the rules are standard
except for LKP, MUT, and PAR. LKP and MUT give a weakest (liberal) precondition
for the lookup and mutation command, respectively, where logically equivalent variant
rules can substitute for them [1, 2].

The inference rule PAR is explained as follows. The condition P ⇒ Πn(σ) in the
premise indicates that the heap mentioned by the precondition P has to disjointly allo-
cate a contiguous block of size n at every address listed in σ. The conjunct (Π1(σ)∧x ↪→
−)∗ true of the precondition implies that in any execution instance x must be bound to
the initial address of a separate block. The rest of conjuncts P∧x ↪→ y1, . . . ,yn indicates
that y1, . . . ,yn must be bound to the contents allocated in the block.

Every different execution of the command body C is intended to update a contigu-
ous block (referred to by x) with contents as mentioned by the postcondition Q. How-
ever, simply putting ∃y1 · · ·yn.(Q∧ x ↪→ y1, . . . ,yn) overspecifies the postcondition of
the command body, since every single execution instance of the command body is only
in charge of updating the block allocated at the address x and does not care about other
blocks. (If it ever updates other blocks, the effect will be canceled by other parallel
execution instances that are in charge of updating those blocks.)

Here we utilize the modal operator as follows in order to mention about such a lim-
ited portion of heap addresses out of the entire set of addresses:

∃y1, · · · ,yn.(x ↪→ y1, · · · ,yn∧�(Q∧ x ↪→ y1, · · · ,yn)).

The first conjunct indicates that the heap allocates contents y1, . . . ,yn at the address x;
The second conjunct requires the contents y1, . . . ,yn to respect the assertion Q but leaves
those contents allocated at other addresses unspecified.

The inference rule comes with a few side conditions for technical reasons. In the
precondition of the premise, the variable x is aliased to a fresh variable z, because the
denotation of x may be altered by an assignment. Variables x,y1, . . . ,yn are local to every
sequential execution of the subcommand C and hence they are assumed not free in P
or Q. Finally, we require that Q be a strictly exact assertion.

The condition that Q be a strictly exact assertion is vital for the soundness of the
inference rule. When we reason about, somewhat informally, a data-parallel execution,
we resort to the assumption that every different parallel execution of the same command
ends up with a single unique result as specified by the postcondition. If Q is strictly
exact, this uniqueness is guaranteed. Otherwise, inconsistencies may arise. For instance,
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ASGN
{P[e/x]}x := e{P}

LKP
{∃z.(P[z/x]∧ e ↪→ z)}x := [e]{P}

z �∈ FV(e)∪FV(P)

MUT
{e �→−∗ (e �→ e′ ∗ P)}e := e′ {P}

SKIP
{P} skip{P}

SEQ
{P}C {Q′} {Q′}C′ {Q}

{P}C;C′ {Q}
BLK

{P}C {Q}

{P}begin var x; C end{Q}
x �∈ FV(P)∪FV(Q)

IF
{P∧Q}C {P′} {P∧¬Q}C′ {P′}

{P} if Q then C else C′ {P′}
WHILE

{P∧Q}C {P}

{P}while Q do C {P∧¬Q}

PAR

P ⇒ Πn(σ)
{

((Π1(σ)∧ x ↪→−)∗ true)∧
P∧ x ↪→ y1, · · · ,yn ∧ x = z

}
C

{
∃y1 · · ·yn.(z ↪→ y1, · · · ,yn ∧

�(Q∧ z ↪→ y1, · · · ,yn))

}
{P} forall x �→ y1, · · · ,yn in σ do C {Q}

x,y1, . . . ,yn,z �∈ FV(P)∪FV(Q), z �∈ FV(C), and Q is strictly exact.

CONSEQ
P ⇒ P′ {P′}C {Q′} Q′ ⇒ Q

{P}C {Q}
EXQ

{P}C {Q}

{∃x.P}C {∃x.Q}
x �∈ FV(C)

DISJ
{P1}C {Q1} {P2}C {Q2}

{P1 ∨P2}C {Q1 ∨Q2}
FRAME

{P}C {Q}

{P ∗R}C {Q∗R}
MD(C)∩FV(R) = /0

Fig. 5. Inference rules for Hoare triples

consider a derivation for a parallel command {P} forall x �→ y in [1001,1002]do C{Q}
with Q � (1001 �→ 1 ∗ 1002 �→ 3)∨ (1001 �→ 4 ∗ 1002 �→ 6), which is not a strictly
exact assertion. Then the execution of the parallel command can result in a heap, say,
h = {(1001,1),(1002,6)}, as this adheres to ∃y.(�(Q∧ z ↪→ y)∧ z ↪→ y). However h
does not satisfy Q and therefore the inference is not sound.

Theorem 1 (Soundness). If {P}C{Q} is derivable, then {P}C{Q} is valid.

Proof. The soundness of the FRAME rule follows from the safety monotonicity and
the frame property [12], which are proved by induction on the size of derivation of
evaluation relations.

To show the soundness of the PAR rule, suppose we have a derivation that ends up
with a conclusion {P} forall x �→ y1, · · · ,yn in σ do C {Q}, with σ = [p1, . . . , pm] (m≥
1). Let (s,h) be any state such that s,h |= P. By the premise P⇒Πn(σ) of the inference
rule, we have h = h1 ∗ · · · ∗hm where hi = h �{pi + d | 0≤ d ≤ n−1} (i ∈ {1, · · · ,m}).
Let si = s[x �→ pi,y1 �→ h(pi), . . . ,yn �→ h(pi +n−1)]. Since x,y1, . . . ,yn,z �∈ FV(P), we
have si[z �→ pi],h |= ((Π1(σ)∧ x ↪→−) ∗ true)∧P∧ x ↪→ y1, · · · ,yn∧ x = z. Hence, by
induction hypothesis, for every i, we have (si[z �→ pi],h),C � (s′i,h

′
i), for some (s′i,h

′
i)∈

State satisfying dom(h′i) = dom(h) and

s′i,h
′
i |= ∃y1 · · ·yn.(z ↪→ y1, · · · ,yn∧�(Q∧ z ↪→ y1, · · · ,yn)). (†)
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Here we notice that s′i[z �→ s(z)] agrees with s for any variable other than MD(C). Hence,
it follows from x,y1, . . . ,yn,z �∈ FV(Q) and (†) that s,h′′i |= Q for some h′′i such that
h′′i (q) = h′i(q) for every i ∈ {1, . . . ,m} and q ∈ {pi + d | 0 ≤ d ≤ n− 1}. Since Q is
strictly exact, we have h′′i = h′′j for every i, j ∈ {1, · · · ,m}. This implies that s,h′ |= Q
holds, where h′ = m

i=1{(pi + d,h′i(pi + d)) | 0≤ d ≤ n−1}.
The proof of other rules is rather a routine and is omitted. ��

5 The Correctness Proof for Parallel List Scan

This section gives a proof for Proposition 1 and shows the correctness of the parallel
list scan program given in Figure 1.

In the proof, we will exploit the properties of assertions listed in Figure 6. In addition
to general properties of the classical BI logic [1], the list contains those specific to
connectives �→, ↪→ and also to the subclasses of pure and precise assertions. Note that
the given set of axioms and inference rules are by no means complete; neither they
are not minimal in the sense that some properties are derivable from others. In the
subsequent formal derivation, the rules in Figure 6 that have no reference number will
be used in the subsequent proof without explicitly mentioned.

Lemma 1. Let n be any positive integer. Then R(i, p,σ,τ) is strictly exact, Πn(σ) is
precise. Also, the following formulas are all valid.

(a) Πn(σ)⇒Π1(σ)∗ true
(b) Πn(σ)⇔Πn(σ1)∗Πn(σ2), whenever part(σ,σ1,σ2).
(c) R(i, p, p′ :: σ,n :: τ)⇒ p ↪→ n,−∧ p = p′

(d) R(i, p, [p′], [n])⇔ p′ �→ n,nil∧ p = p′ ∧ i≥ 0
(e) �R(i, p,σ,τ)⇔�R(i+ 1, p,σ,τ)∧ i≥ 0
(f) (Π1(σ)∧ p ↪→−,−)∗ true∧R(0, p,σ,τ)⇒ false
(g) R(i, p1, p1 :: σ1,τ1)∗ (R(i, p2,σ2,τ2)∧ p2 + 1 ↪→ nil)⇒ p1 + 1 ↪→ nil,

whenever part(σ, p1 :: σ1,σ2) and alts(τ,τ1,τ2) for some σ and τ.

We omit the proof, which is by routine induction on i and the length of σ.

Proof of Proposition 1(a). By the inference rule PAR, it is sufficient to show the deriv-
ability of the specification:{

((Π1(σ)∧ x ↪→−)∗ true)∧
R(i, p,σ,τ)∧ x ↪→ n,t∧ x = z

}
Cforall

{
∃nt.(z ↪→ n, t∧
�(R(i+ 1, p,σ,τ)∧ z ↪→ n, t))

}
. (5.11)

Proof is by induction on i and the length of σ (and τ).
Case σ = τ = []. It vacuously holds by the rule CONSEQ.
Case σ = [p′] and τ = [n′]. We have R(i, p,σ,τ) ∧ x ↪→ n, t ∧ x = z ⇔ i ≥ 0 ∧ x �→
n, t∧n = n′ ∧x = z∧z = p∧ p = p′ ∧t = nil by lemma 1(d), (5.5), and (5.1). Since the
conjunction of this formula and t �= nil leads to absurdity, by the rules IF and CON-
SEQ, (5.11) is derived from the implication x �→ n,t ∧ n = n′ ∧ x = z∧ z = p∧ p =
p′ ∧t = nil⇒∃nt.(z �→ n,t∧�(p′ �→ n′,nil∧ p = p′ ∧z ↪→ n, t)), which follows from
(5.1), (5.5), and (5.6).
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(P∗Q)∗R⇔ P ∗ (Q∗R) P∗Q⇔ Q∗P P∗ emp⇔ P

(P1∨P2)∗Q⇔ (P1 ∗Q)∨ (P2 ∗Q) (P1∧P2)∗Q⇒ (P1 ∗Q)∧ (P2 ∗Q)

(∃x.P)∗Q⇔∃x.(P∗Q) and (∀x.P)∗Q⇒∀x.(P∗Q) where x is not free in Q

P1 ⇒ Q1 P2 ⇒ Q2

P1 ∗P2 ⇒ Q1 ∗Q2

P∗Q⇒ R

P⇒ (Q ∗ R)

P⇒ (Q ∗ R)
P∗Q⇒ R

P⇒ Q
�P⇒�Q

P⇒�P �(P∨Q)⇔�P∨�Q �(P∧Q)⇒�P∧�Q

∃x.�P⇔�∃x.P �(P∗Q)⇔�P∗�Q

x �→ y1, · · · ,yn∧ x′ �→ y′1, · · · ,y′n ⇔ x �→ y1, · · · ,yn∧ x = x′ ∧ n
i=1 yi = y′i (5.1)

x = x′ ∧ x ↪→ y∧ x′ ↪→ y′ ⇒ y = y′ (5.2)

x �→−∗ x′ �→−∗ true⇒ x �= x′ (5.3)
n
i=1(x+ i−1 ↪→ yi)⇔ x ↪→ y1, . . . ,yn (5.4)

x �→ y1, · · · ,yn∧ x′ �→ y′1, · · · ,y′n ⇔ x �→ y1, · · · ,yn∧ x′ ↪→ y′1, · · · ,y′n (5.5)

�(x �→ y)⇔ x �→− (5.6)

(P1 ∗P2)∧ x ↪→ y⇔ (P1∧ x ↪→ y)∗P2∨P1 ∗ (P2∧ x ↪→ y) (5.7)

For any pure assertions P,P1,P2,

P1∧P2 ⇔ P1 ∗P2 (P∧Q)∗R⇔ P∧ (Q∗R) P⇔�P �(P∧Q)⇔ P∧�Q

((P∧Q) ∗ (P∧R))∧P⇒ Q ∗ (P∧R) (5.8)

For any precise assertions P,P1,P2,

(P∗Q1)∧ (P ∗Q2)⇔ P∗ (Q1∧Q2) (5.9)

(P1∧Q1)∗P2∧P1 ∗ (P2∧Q2)⇔ (P1∧Q1)∗ (P2∧Q2) (5.10)

Fig. 6. Properties of assertions

Case σ = p1 :: p2 :: σ′, τ = n1 :: n2 :: τ′, and i = 0. We prove by case analysis on the
equality of p and z.

First consider the case p = z. Below we show the proof outline for the then clause
of the conditional in Cforall:
{(p1 �→ n1, p2∧ x ↪→ n, t)∗ p2 �→ n2,q∧ p = p1∧ x = z}
{(x �→−,−∗ p2 �→−,−)∧ t ↪→ n2,q∧ p = p1∧ p1 = z∧n1 = n∧ x = z} by (5.5)

m := [t]; t := [t + 1]
{(x �→−,−∗ p2 �→−,−)∧ p = p1∧ p1 = z∧n1 = n∧n2 = m∧q = t ∧ x = z}
{(x �→−,−∗ p2 �→−,−)∗ (x �→ (n + m),t ∗ x �→ (n1 + n2),q)
∧ p = p1∧ p1 = z∧ x = z}

— (*)

[x] := n + m; [x + 1] := t

{(x �→ (n1 + n2),q ∗ p2 �→−,−)∧ p = p1∧ p1 = z∧ x = z}
{(z �→ (n1 + n2),q ∗ p2 �→−,−)∧ p = p1∧ p1 = z}.



Reasoning About Data-Parallel Pointer Programs 305

The proof step (∗) is derived as follows. Let P0 � n1 = n∧n2 = m∧q = t. Then
we have emp∧P0 ⇒ (x �→ (n1 + n2),q∧P0 ∗ x �→ (n1 + n2),q∧P0)∧P0 ⇒ x �→
(n + m),t ∗ x �→ (n1 + n2),q by emp⇒ Q ∗ Q, (5.8) and (5.1).

Thus we have the proof outline for Cforall as below, where σ′1, σ′2, τ′1, τ′2 de-
note sequences satisfying part(p1 :: p2 :: σ′, p1 :: σ′1, p2 :: σ′2) and alts(n1 :: n2 ::
τ′,(n1 + n2) :: τ′1,τ

′
2).

{p = z∧ (Π1(σ)∧ x ↪→−)∗ true∧R(0, p,σ,τ)∧ x ↪→ n, t ∧ x = z}
{(p1 �→ n1, p2∧ x ↪→ n, t)∗ (p2 �→ n2,q)∗R(0,q,σ′,τ′)∧ p = p1∧ x = z}

Cforall by FRAME,EXQ, (5.7), (5.3)

{(z �→ (n1 + n2),q ∗ p2 �→−,−)∗R(0,q,σ′,τ′)∧ p = p1∧ p1 = z}
{z ↪→ (n1 + n2),q∧ �(p = p1∧ p1 = z∧ (p1 �→ (n1 + n2),q

∧ z ↪→ (n1 + n2),q)∗R(0,q,σ′1,τ′1)∗R(0, p2 :: σ′2,τ′2))}
by (5.1), (5.6),
and lemma 1(e)

{∃nt.(z ↪→ n, t ∧�(R(1, p,σ,τ)∧ z ↪→ n, t))} by (5.7) and EXQ.

Let σ′1,σ
′
2,τ

′
1,τ

′
2 be defined as above. The other case p �= z is proved as follows.

{p �= z∧ (Π1(σ)∧ x ↪→−)∗ true∧R(0, p,σ,τ)∧ x ↪→ n, t ∧ x = z}
{p1 �→−∗ (Π1(p2 :: σ′)∧ x ↪→−)∗ true by EXQ, (5.7), (5.3)

∧ p1 �→ n1, p2 ∗ (R(0, p2, p2 :: σ′,n2 :: τ′)∧ x ↪→ n, t)∧ p = p1∧ x = z}
{(p = p1∧ p1 �→ n1, p2)∗ (Π1(p2 :: σ′)∧ x ↪→−)∗ true

∧R(0, p2, p2 :: σ′,n2 :: τ′)∧ x ↪→ n, t ∧ x = z}
by (5.5), (5.1), (5.9),
(5.7), (5.4), lemma 1(f)

Cforall

{(p = p1∧ p1 �→ n1, p2)∗
∃nt.(z ↪→ n,t ∧�(R(1, p2, p2 :: σ,n2 :: τ)∧ z ↪→ n, t))}

by I.H. and FRAME

{∃nt.(z ↪→ n, t ∧�(p1 �→ (n1 + n2),q∗
R(0,q,σ′1,τ

′
1)∗R(0, p2 :: σ′2,τ

′
2)∧ p = p1∧ z ↪→ n, t)} by (5.6)

{∃nt.(z ↪→ n, t ∧�(R(1, p,σ,τ)∧ z ↪→ n, t))}. by EXQ

Combining the two cases, we derive the specification (5.11) by the rule DISJ.
Case σ = p1 :: p2 :: σ′, τ = n1 :: n2 :: τ′, and i > 0. Let σ′1, σ′2, τ1, τ2 be sequences
satisfying part(σ′,σ′1,σ

′
2) and alts(τ,τ1,τ2), and also define R j(i) � R(i, p j, p j ::

σ′j,τ j) for every j ∈ {1,2}. Then for every j ∈ {1,2} we have:

{p = p1∧ (Π1(σ)∧ x ↪→−)∗ true∧R j(i−1)∗(R3− j(i−1)∧ x ↪→ n, t)∧ x = z}
{(p = p1∧R j(i−1))∗ ((Π1(σ3− j)∧ x ↪→−)∗ true

∧R3− j(i−1)∧ x ↪→ n,t ∧ x = z)}
by lemma 1(a) and (b),
(5.7), (5.10), (5.3)

Cforall

{(p = p1∧R j(i−1))∗∃nt.(z ↪→ n,t ∧�(R3− j(i)∧ z ↪→ n, t))} by I.H. and FRAME

{∃nt.(z ↪→ n,t ∧�(p = p1∧R j(i)∗R3− j(i)∧ z ↪→ n, t))} by lemma 1(e) and (5.7).

Therefore (5.11) follows from R(i, p,σ,τ)⇔ p = p1 ∧R1(i− 1) ∗R2(i− 1) and
(5.7) by the rule DISJ. ��
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Proof of Proposition 1(b). When σ = [], the assertion vacuously holds. Suppose σ �=
[]. We have {R(i, p,σ,w)}Cforall {R(i+ 1, p,σ,w)} by proposition 1(a) and {∃z.(R(i+
1, p,σ,w)∧ p + 1 ↪→ z)} q := [p + 1] {R(i + 1, p,σ,w)∧ p + 1 ↪→ q} by the rule LKP.
Since R(i+1, p,σ,w)⇒∃z.(R(i+1, p,σ,w)∧ p+1 ↪→ z by lemma 1(c), it follows that
{R(i, p,σ,w)}Cforall; q := [p + 1]{R(i+ 1, p,σ,w)∧ p + 1 ↪→ q} by the rules SEQ and
CONSEQ. Thus the assertion follows by the rules EXQ and WHILE. ��

Proof of Proposition 1(c). By induction on i and the length of σ (and τ).
When i = 0, we have R(0, p, p1 :: σ,n1 :: τ)∧ p+1 ↪→ nil⇒∃q.(p ↪→ n1,q∗R(0,q,σ′,

τ′))∧ p = p1∧ p+1 ↪→ nil⇒∃q.(R(0,q,σ,τ)∧q = nil)∗(p = p1∧ p ↪→ n1,nil) by (5.2).
This indicates that σ = τ = [] and thus sum(n1 :: τ,n1).

Suppose i > 0. The case σ = τ = [] is likewise proved. Let σ′,σ′1,σ
′
2,τ

′,τ′1,τ
′
2 be

sequences satisfying σ = p2 :: σ′, τ = n2 :: τ′, part(σ′,σ′1,σ′2), and alts(n2 :: τ′,n2 ::
τ′2,τ′1), and also let n′ be an integer such that alts(n1 :: τ,n′). Then we have:

R(i, p, p1 :: σ,n1 :: τ)∧ p + 1 ↪→ nil

⇒ (R(i−1, p1, p1 :: σ′1,(n1 + n2) :: τ′1)∧ p1 + 1 ↪→ nil)
∗R(i−1, p2, p2 :: σ′2,n2 :: τ′2)∧ p = p1

by (5.7), (5.3)

⇒ ∃q.(R(i−1,q,σ′1,τ
′
1)∧ (q = nil∨q + 1 ↪→ nil))

∗R(i−1, p2, p2 :: σ′2,n2 :: τ′2)∗ (p = p1∧ p1 ↪→ n′,nil)
by induction hypothesis

⇒ (R(i−1, p2, p2 :: σ′2,n2 :: τ′2)∧ p2 + 1 ↪→ nil)
∗∃q.R(i−1,q,σ′1,τ

′
1)∗ (p = p1∧ p1 ↪→ n′,nil)

— (**)

⇒ (R(i, p2,σ,τ)∧ p2 + 1 ↪→ nil)∗ (p = p1∧ p1 ↪→ n′,nil) by (3.4), (3.5), (5.7)

The implication (∗∗) is derived as follows. If q = nil, then R(i−1,q,σ′1,τ′1) implies
σ′1 = [] and thus σ′2 = [] by (3.1). Hence R(i− 1, p2, p2 :: σ′2,n2 :: τ′2)⇒ p2 + 1 ↪→ nil.
Otherwise, we have (R(i−1,q,σ′1,τ′1)∧q + 1 ↪→ nil)∗R(i−1, p2, p2 :: σ′2,n2 :: τ′2)⇒
p2 + 1 ↪→ nil by lemma 1(g). ��

Theorem 2. Let Cscan denote the program in Figure 1. Then the following specification
is valid.

{R(0, p,σ,τ)∧ p �= nil}Cscan {∃i.R(i, p,σ,τ)∧ p + 1 ↪→ nil}

This theorem follows from proposition 1(b). As a corollary, we can deduce from propo-
sition 1(c) that the program computes the list scan, i.e., when the program terminates,
every cons cell holds the sum of the corresponding sublist.

6 Conclusion

We have proposed a program logic for reasoning about data-parallel programs. We have
worked out a formal correctness proof for the parallel list scan algorithm that employs
the pointer jumping, a common method for parallel processing of linked data structures.
The proof system adopts Separation Logic as a formal means to represent disjoint parti-
tioning of linked data structures and further extends it with modality to provide a sound
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specification for the data-parallel command forall . This enables us to formally present
the parallel list scan algorithm as another instance of the divide-and-conquer strategy.

We believe that our program logic can also apply to other variants of parallel algo-
rithms based on parallel prefix or scan [4]. However, in the present paper, it is assumed
that each parallel execution instance can only update heap contents owned by the in-
stance itself. In some parallel algorithms, it is vital that every execution instance is
possible to update heap contents owned by other instances. Such algorithms are more
difficult to verify, because of possible race conditions caused by concurrent writes to
the heap storage. It would be an interesting future topic to refine the present proof sys-
tem for allowing concurrent writes. We hope that the notion of ownership transfer [13]
might give a relevant solution to this issue.
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Abstract. We propose a methodology based on testing as a framework
to capture the interactions of a machine represented in a denotational
model and the data it manipulates. Using a connection that models ma-
chines on the one hand, and the data they manipulate on the other, test-
ing is used to capture the interactions of each with the objects on the
other side: just as the data that are input into a machine can be viewed
as tests that the machine can be subjected to, the machine can be viewed
as a test that can be used to distinguish data. This approach is based on
generalizing from duality theories that now are common in semantics to
logical connections, which are simply contravariant adjunctions. In the
process, it accomplishes much more than simply moving from one side
of a duality to the other; it faithfully represents the interactions that
embody what is happening as the computation proceeds.

Our basic philosophy is that tests can be used as a basis for modeling
interactions, as well as processes and the data on which they operate. In
more abstract terms, tests can be viewed as formulas of process logics,
and testing semantics connects processes and process logics, and assigns
computational meanings to both.

1 Introduction: The Problem of Testing

Testing a family Ξ of systems by a family Θ of tests, or process logic formulas,
is a map

Ξ ×Θ
T �� Ω

where Ω is the type of observations, or truth values. The simplest case is Ω =
{0, 1}, where 1 represents “accept”, or “succeed”, or “truth”, and 0 is “reject”, or
“fail”, or “diverge”, or “false”. A richer semantics can be achieved if one replaces
the truth values {0, 1} by the interval [0, 1], and interprets the result of a test as
the probability a process passes it. But the problem with either approach is that
once the test is performed, we have only the result. Making tests more dynamic
requires taking a slightly different view.
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The goal of testing is to find bugs, which distinguish an implemented, real
system R ∈ Ξ from an ideal reference system S ∈ Ξ, or to demonstrate that
they are indistinguishable. A bug can be construed as a test b ∈ Θ, which leads to
an observation R |= b, different from the observation S |= b. On the other hand,
if (R |= t) = (S |= t) for all tests t ∈ Θ, then the systems are computationally
indistinguishable, modulo testing equivalence

R ∼ S ⇐⇒ ∀t ∈ Θ. (R |= t) = (S |= t)

The basic methods of studying computation in terms of tests on automata go
back to the 1950s and E.P. Moore’s seminal paper [1]. Moore introduced dis-
tinguishing sequences of tests, as well as testing equivalence, and several other
fundamental ideas, which later led to a broad range of methods of conformance
testing, which is the discipline of proving that an implementation R conforms to
a standard S. Other problems resolved through testing include determining the
current or the final state of a given automaton, or characterizing an unknown
automaton.1 One of Moore’s most interesting contributions was the method of
extracting minimal automata, i.e. the canonical representatives of computational
behaviors, from equivalence classes of states modulo testing equivalence.

The starting point of the present work is a small modification of Moore’s idea:
we represent equivalent states, which form a state of a minimal automaton, not
as equivalence classes of states, but as the maps from tests to observations that
they induce: two states are equivalent if and only if they induce the same map.
Either way, the computational behaviors arise as the elements in the image L of
the semantic map, in the form

Ξ
|=

��

�� ��













 ΩΘ

L
� �

����������

The choice of representatives, of course, does not matter for abstract the-
ory, but it turns out to make a lot of difference when it comes to analyzing
state-based systems which arise in the design of reactive and embedded systems,
involving stochastic, continuous, temporal or hybrid dynamics. The study of la-
belled Markov processes [4] provides a striking example. On the other hand, a
generic categorical framework where states are represented as truth assignments
of logical formulas has been used in [5, 6, 7]. In this paper, we will confine our pre-
sentation to the possibilistic setting, leaving the probabilistic setting for further
work. For this setting the categorical trace semantics of finite state automata
[8] and context-free languages [9] are clear examples, and are close conceptual
predecessors of testing semantics. What appears to be new is our ability to bring
Turing machines into the same setting.

1 Excellent surveys of testing methodologies (albeit a bit outdated in applications) are
[2, 3].
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2 Logical Connections

A logical connection is a contravariant adjunction Mop � P : Sop �� T be-
tween a category of “spaces” and a category of “types” or “theories”. In one
direction, a space X is mapped to the type PX of “predicates” over it; in the
other direction, a type A is mapped to the space MA of its models. Among the
many dualities that are examples of logical connections, we mention just a few:

Self-duality of sets: ℘op � ℘ : Setop �� Set, which can be viewed as du-
ality of discrete spaces and complete atomic Boolean algebras (the category
of which is equivalent to Setop). In more detail, the functor associates to a
set A the family ℘(A) of all subsets of A, and to a mapping f : A �� B
between sets, the mapping f−1 : ℘(B) �� ℘(A). The power set of a set
is a complete, atomic Boolean algebra, and the mapping f−1 preserves all
unions, intersections and complements. Thus our duality identifies each set
with the complete atomic Boolean algebra it generates, and to each algebra,
its set of atoms.

Here are some other notable connections, many of them dualities:
Stone duality: More generally, if we let T be Boolean algebras (viewed as

propositional theories), then S becomes Stone spaces (whose points are the
ultrafilters, i.e. models of Boolean propositional theories),

Topological spaces and complete Heyting algebras: Generalizing to in-
tuitionistic logic, we can let pt � O : Espop �� Frm [10], At this level,
we get a logical connection; to obtain a duality, a restriction to sober spaces
and spatial frames, respectively, is needed, but that is not required for our
results,

Various spectral correspondences: C � S : Espop �� Rng, connecting
topological spaces and rings (and leading to significant extensions of the
notion of a logical theory),

Denotational semantics: and connections of domains and spaces with pro-
gram logics [11].

The Schizophrenic object. The power set of a set can equally be represented
as the family of functions from the set to the two-point set, 2 = {0, 1}, where one
identifies a subset with its characteristic function. Dually, 2 is a Boolean algebra,
and the set of atoms of a complete, atomic Boolean algebra B is in one-to-one
correspondence with the Boolean algebra maps from B to 2. Thus, 2 is a primary
example of a schizophrenic object, one which lives in both categories and that
gives rise to a duality using the morphisms of the category. In general, when S
and T have enough limits and colimits, and in particular a final object 1, then
a connection between them can be viewed as homming into a “schizophrenic
object” Ω, that lives in both categories, as the type P1 and space M1. Indeed,
it is easy to see that these two objects have the same underlying set Obs =
|P1| = |M1|.2 For every space X we also have the canonical maps

2 We write |C| = C(1, C) for any object C of a category C.
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∐
|X|

1 �� X

PX �� P (
∐
|X|

1) ∼ ��
∏
|X|

P1

where the isomorphism arises from the fact that P : Sop �� T is a right
adjoint. Similarly, for every type A there is a canonical map MA �� ∏

|A| M1.
These maps are usually monic, which means that Ω is a cogenerator3 both
in S and in T . Abusing notation, we define the functors ΩX =

∏
|X| P1 and

ΩA =
∏

|A| M1, and arrive at monic natural transformations

PX �� �� ΩX and MA �� �� ΩA.

3 Process Logics as Test Algebras

Process logics are modal logics for describing the behavior of computational
processes. Process formulas can be viewed as tests: a process satisfies a formula
if and only if it passes the test that the formula represents.

The first and probably best known process logic is Hennessy-Milner logic [12],
which will be presented in section 6.2. In fact, computational traces can be viewed
as degenerate process formulas, with no logical operations, only modalities. On
the other hand, dynamic logics can be viewed as a natural extension of process
logics, where modalities are generated over arbitrary programs, and not just
atomic actions.

In this work, process modalities are generated over a given alphabet Σ, rep-
resenting atomic actions. Sometimes we distinguish the input alphabet Σ and
the output alphabet Γ ; or Σ represents the external actions (terminal symbols),
and Γ the internal ones.

Besides modalities, process formulas are generated by various logical sig-
natures, i.e. sets of logical connectors represented by the theory monad T :
T �� T . If a type A ∈ T is thought of as a set of propositional letters, then
the type TA is the free propositional theory, containing all formulas generated
by A in the given signature. E.g., if the only logical connector is conjunction,
then TA is the free semilattice over A; but it has proven useful to also consider
free commutative groups, rings, and even C∗-algebras of a certain type, as “log-
ical” theories, generating tests for certain process behaviors. In all cases, the
considered algebraic theories have a distinguished constant, denoting “truth”,

represented by a natural transformation 1 � �� T .

Assumption: Ω is T -algebra. It is assumed that the schizophrenic object Ω
comes equipped with a canonical algebraic structure TΩ �� Ω, which lifts to
all TPX �� PX along the inclusion PX �� �� ΩX .

3 In fact, the duality of S and T is usually built by restricting them to the parts
injectively cogenerated by the object Ω, embodying their connection.
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3.1 Test Theories

Test theories are obtained by extending T -algebras (“propositional theories”) by
the modal operators generated by Σ. For example, if T is the power set functor,
then we generate the so-called modal Boolean algebras by lifting actions of Σ
on a transition system to modal operators for the power set of its state space.
In general, a test theory is a (weak) algebra for either of the functors

F0X = TX + Σ ×X or F1X = T (Σ ×X)

In both cases the universal test theory is obtained as the initial weak algebra

Θi = μX. FiX

Tests are thus generated by the grammars

t0 ::= � | f(t0, . . . , t0) | a.t0 and t1 ::= � | f(a.t1, . . . , a.t1)

where f a logical connector from the signature of T . By pre-composing with the
monad T , we see that the weak F0-algebra Θ0 is a weak algebra for the functor
T , while Θ1 is just the free T -algebra for the monad T generated by Σ. In fact,
Θ1 is the initial action algebra:

Definition 1. An action algebra for a monad T : T �� T and alphabet Σ

is an algebra TA
α �� A for the monad T , together with a map Σ×A

· �� A,
called prefixing. An action algebra homomorphism is a T -algebra homomorphism
which also preserves prefixing.

Proposition 1. The free action algebra for the monad T and the alphabet Σ
generated by B is the initial weak algebra ΘB = μX. T (Σ × (B + X)).

4 Automata and Processes as Coalgebras

Nondeterminism and more recently probabilistic choice are staples of compu-
tation. The constructors for choice operators are represented by a monad S :
S �� S.

Definition 2. A (state) machine with inputs from Σ, outputs from Γ and final
states predicated over Υ is represented by

– a coalgebra X �� GX where GX = Υ × (S(Γ ×X))Σ

– an initial state x ∈ X.

A process is a machine where any state may be final, i.e. Υ = 1. A process
thus boils down to a coalgebra ∂ : X �� (S(Γ ×X))Σ and the initial state
x ∈ X. A machine where Υ �= 1 is often called an automaton. When the coalgebra
X �� GX is clear from the context, we speak of the automaton or process
x ∈ X.
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A coalgebra structure of a machine consists of a pair X
〈Φ,∂〉�� Υ × (S(Γ ×X))Σ ,

where Φ : X �� Υ is the characteristic function of the final states, and ∂ :
X �� (S(Γ ×X))Σ assigns to each state a choice of an output and a next
state.4 Final states are usually evaluated in the type of truth values Υ = L. For
the possibilistic automata, Υ = 2, and Φ : X �� 2 is just the characteristic
function of the set of final states. In general, Υ may be different from L, e.g. an
arbitrary semiring [13].

The computational differences between reactive (or reading) machines, where
Γ = 1, and generating (or writing) machines are discussed in [14]. Coalgebras
X �� (S(Γ ×X))Σ thus represent processes that both read and write, which
is perhaps clearer in the transposed form Σ ×X �� S(Γ ×X).

Initially we focus on reactive processes, which are represented by the final
weak coalgebra Ξ = νX. (SX)Σ.

Assumption: Ω is S-algebra. It is assumed that Ω comes equipped with
a canonical algebraic structure SΩ �� Ω, which lifts to all SMA �� MA
along the inclusion MA �� �� ΩA.

5 Testing Semantics

The behaviors of processes from Ξ are captured by testing whether they satisfy

formulas from Θ and observing the results in Ω via Ξ ×Θ
T �� Ω. However,

since Ξ and Θ generally live in the different universes S and T , respectively, their
interaction can only be observed using the connection between these universes,
in one of the two forms:

Ξ
|= �� ΩΘ

Θ
=| �� ΩΞ

In general, given a coalgebra X �� GX , and an algebra A �� FA, we define
two semantic maps

X
|= �� MA

A
=| �� PX

connected by the adjunction. Each state x ∈ X induces a map x |= (−) :
A �� Ω which maps each piece of data a ∈ A to the observation (x |= a) ∈ Ω
in which the computation of x on a will result. Dually, each piece of data a ∈ A
induces a map

a =| (−) ∈ PX �� ΩX

4 Anticipating semantics, we point out that the execution is always allowed to con-
tinue beyond a final state. This is in contrast with the deadlock states, which are
represented by a choice functor G of the form G = 1 + G′. The deadlock states of a
coalgebra X �� 1 + G′X are those that get mapped into 1.
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which gives for each state x ∈ X the observation a =| x. Theorem 1 below
describes how these various views of semantics transform the algebraic structure
of tests and the coalgebraic structure of processes.

5.1 Connecting Algebras and Coalgebras: Representation Theorem

Logical view. The logical operation of negation can be viewed as a very special
case of a connection: if A is a pseudocomplemented lattice (Heyting algebra),
then ¬op � ¬ : Aop �� A is clearly a connection. Indeed, for every ω ∈ A, the
operation (−) ⇒ ω : Aop �� A is self adjoint. In posets and lattices, functors
F, G : A �� A are monotone operators, algebras are super-fixpoints a ≥ Fa,
and colagebras are sub-fixpoints a ≤ Ga; the initial algebra μx.Fx is the least
fixpoint, and the final coalgebra νx.Gx is the greatest fixpoint.

For logical intuition, connections can be thought of as generalisations of nega-
tion. From that perspective, the following theorem can be viewed as a categorical
elaboration of the fact that

Gx ≤ ¬F¬x

νx.Gx ≤ νx.¬F¬x ≤ ¬μa.Fa

What is the relevance of this fact? As explained in the introduction, the
goal of this work is to explore the interplay of algebra and coalgebra in the
theory of processes and in the practice of system specification. In practice, the
behavior of a system is often specified as a quotient of a final coalgebra νX.GX
of processes using an initial algebra μA.FA of tests. The connection Mop � P :

Sop �� T now allows deriving the semantics νX.GX
|= �� MμX.FX if there

is a distributive law FP �� PG, i.e.

G �� MFP

νX.GX �� νX.MFPX �� MμA.FA

The specified behavior is then the MFP -coalgebra L which is the image of
νX.GX in νX.MFPX . Furthermore, the carrier L can be conveniently repre-
sented as a subobject of MμA.FA. Informally, this is the content of the next
theorem.

Relating a MFP -coalgebra and a M -image of a F -algebra requires a homo-
morphism which is consistent with the algebra and coalgebra structures both
on the covariant and on the contravariant side of the correspondence (i.e., the
“negation”). This is captured by the notion of twisted coalgebra homomorphisms,
defined in the statement of the theorem.

Theorem 1. 5 For a connection Mop � P : Sop �� T , endofunctors G :
S �� S and F : T �� T , and a distributive law λ : FP �� PG the
following hold.
5 For simplicity and generality of the statement of the theorem, we avoid the finality

and the initiality requirements, and spell out just the relations of F -algebras, and
G− and MFP -coalgebras.
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(a) The predicate functor P : Sop �� T lifts to P̂ : (SG)op ��
F T , map-

ping

X
∂ �� GX

P̂∂ : FPX
λ �� PGX

P∂ �� PX

(b) P̂ does not generally have an adjoint, but there is a correspondence of
algebra homomorphisms and of twisted coalgebra homomorphisms

α �� P̂ ∂

Λ∂ �� Mα

where Λ : SG
�� SMFP is the functor mapping the coalgebra X

∂ �� GX to

X
∂ �� GX

λ′
�� MFPX.

FA

α

��

Ff �� FPX

λ

��

MFPX
MFf �� MFA

PGX

P∂

��

GX

λ′

��

A
f

�� PX X

∂

��

f ′
�� MA

Mα

��

(c) If T is a regular category, and F : T �� T preserves reflective coequaliz-
ers, then FT is a regular category. In particular, every F -algebra homomorphism

α
f �� P̂ ∂ has a regular epi-mono factorisation.

(d) If S is a regular category, and MFP preserves weak pullbacks, then every

twisted coalgebra homomorphism Λ∂
f ′

�� Mα has a regular epi-mono factori-
sation, which induces a coalgebra � : L �� MFPL as the image of Λ∂.

MFPX
MFPe �� MFPL

MFm′
�� MFA

GX

λ′

��

X

∂

��

e
�� �� L

�

���
�
�
�
�
�
�
� �

m
�� MA

Mα

��

(e) If the coalgebra X �� GX is final, then the coalgebra L �� MFPL is
final if and only if the functor Λ : SG

�� SMFP is essentially surjective.
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Comment. The correspondence T /P ∼= S/Mop thus lifts to FT /P̂ ∼= Λ/M ,
where the last denotes the comma construction for twisted homomorphisms.
Abstractly, this does not seem like a very natural construction; the examples
show that this is the ubiquitous framework where quotienting of the G-coalgebras
∂ induced by testing semantics takes place.

Definition 3. A duality is a connection where the functors M and P are equiv-
alences.

Corollary 1. Suppose that the connection Mop � P : Sop �� T is a duality.
Then the following are true.
(f) The algebra α : FA �� A is initial if and only if the coalgebra M(α ◦

ε) : MA �� MFPMA is final. When that is the case, then the behavior � :
L �� MFPL is a subcoalgebra of the final MFP -coalgebra.

(g) If F ∼=PGM (equivalently G∼=MFP ), then the behavior � : L �� MFPL,
constructed in Theorem 1, is isomorphic to the coalgebra ∂ : X �� GX. If
∂ : X �� GX is final and α : FA �� A is initial, then ∂ ∼= Mα and
α = P∂.

In many cases, the functor F = PGM has a simpler representation than G,
and the initial algebra Θ = μA.FA is easier to construct in T than the final
coalgebra of Ξ = νX.GX is in S. In such cases, the isomorphism Ξ = MΘ
offers significant technical advantages [4].

5.2 Specifying Semantics

Given a coalgebra X
∂ �� GX and the initial test algebra FΘ

� �� Θ, we

define a semantics X
|= �� MΘ by induction over Θ, using the fact that Ω is a

T -algebra in T and an S-algebra in S — i.e. that each PX is a T -algebra in T ,
whereas each MΘ is an S-algebra in S. Given an initial state x of a machine X ,
we define a map x |= (−) : Θ �� Ω.

Loose tests. Since an element of Θ0 = μX. TX + Σ ×X is in the form

t ::= � | f(t0 . . . tn) | a.t

where � is the distinguished constant of the algebraic theory of the monad T ,
and f is an operation from that theory(

x |= �
)

= � (1)(
x |= f(t0 . . . tn)

)
= f

(
(x |= t0) . . . (x |= tn)

)
(2)(

x |= a.t
)

=
(
δ(x, a) |= t

)
(3)

where δ : X × Σ �� SX is the transpose of X
∂ �� GX = (SX)Σ, and |=

extends along X
|=

�� SX �� MΘ0 �� ΩΘ0 .
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Remark. Clauses (1) and (2) say that x |= (−) : A �� Ω is a T -algebra
homomorphism. Clause (3) extends x |= (−) beyond TΘ0 to Σ × Θ0, using

the fact that Ω (viz MΘ0) is an S-algebra, and extending X
|= �� MΘ0 to an

S-algebra homomorphism SX
|= �� MΘ0.

Tight tests. Since an element of Θ1 = μX. T (Σ ×X) is in the form

t ::= � | f(a0.t0 . . . an.tn)

the semantics retains clause 1, deletes clause 3, and replaces clause 2 with(
x |= f(a0.t0 . . . an.tn)

)
= f

(
(δ(x, a0) |= t0) . . . (δ(x, an) |= tn)

)

Note further that testing a coalgebra X
〈Φ,∂〉�� Ω × GX , where Φ : X �� Ω

denotes the final states, changes the base clause of semantics to
(
x |= �

)
= Φ(x).

6 Possibilistic Semantics

Possibilistic semantics is evaluated in Ω = {0, 1}. In the simplest case, both
state spaces and data types are modeled in the same universe S = T = Set of
sets and functions. The contravariant powerset functor is self-adjoint ℘op � ℘ :
Setop �� Set, and maps a state to the type of predicates over it, and a type
to the space of its models.6

Possibilistic systems. Possibilistic nondeterminism means that there can be
several possible transitions from a state x ∈ X , for a given action a ∈ Σ. The
choice monad is thus based on the (covariant) finite powerset functor S = ℘f :
S �� S. Simple processes are thus coalgebras in the form X �� (℘fX)Σ ,
or X �� ℘f (Σ ×X).

6.1 Linear Semantics: Trace Testing

A trace semantics describes computations over strings of symbols. The tests are
thus pure modal formulas, with no logical operations except the constant �. The
logic monad is thus the smallest possible: TA = �, for all A ∈ T = Set. The
loose and the tight semantics for it coincide, and the test algebra Θ is initial for
FA = 1+Σ×A, i.e. the free monoid Σ∗. Trace semantics have been investigated
as an extension of coalgebraic methods in [8, 9]. We describe three examples.

6 In the Hennessy-De Nicola [15] style testing semantics, tests are a special class of
processes. In our testing framework, this means that tests and processes live in the
same universe S = T , and moreover that the test algebra FΘ �� Θ is contained
in (can be completed to) a choice coalgebra Ξ �� GΞ. Indeed, the trace algebra
Θ = Σ∗ is a coalgebra Σ∗ �� Σ × Σ∗ �� ℘

f
(Σ × Σ∗).
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Finite state automata. Possibilistic automata are coalgebras in the form

X
〈Φ,∂〉�� 2×℘f (Σ×X). The trace semantics of finite state automata is obtained

by instantiating (1-3)

(x |= �) = Φ(x) (4)

(x |= a.t) =
∨

x
a→y

(y |= t) (5)

where x
a→ y means that y ∈ δ(x, a). Note that (4) says that x |= (−) : Θ �� Ω

only preserves � where Φ holds. The final states Φ are an explicit relativisation
of the �-preservation requirement; the semantics x |= (−) : Θ �� Ω is a
T -algebra homomorphism up to Φ.

Let Aut denote bisimulation classes of finite-state automata, let GX = 2 ×
℘f (Σ ×X) ∼= ℘f (1 + Σ × X), and let Aut �� G(Aut) be final for all finite

G-coalgebras. Then the trace semantics Aut
|= �� ℘Σ∗ maps each automaton

x ∈ Aut to the language Lx = {σ ∈ Σ∗ | x |= σ}.
Pushdown automata. While finite state automata behaviors were obtained
by structuring the alphabet Σ, pushdown automata are obtained by structuring
the state spaces X . Fix a set Γ , to be used as “non-terminal” symbols, and
extend each state space X by the free monoid action to X × Γ ∗. A pushdown
automaton is a coalgebra for the functor G : S �� S, defined

GX = 2×℘f (X × Γ ∗)Σ+1

where the “blank” symbol � ∈ 1 allows pure non-terminal rewrites. A start non-
terminal symbol Z0 ∈ Γ is assumed to be distinguished, or freely added. The
test algebra is still the same, Θ = Σ∗.

Turing Machines. Turing machines act on tapes. The obvious idea is to view
the contents of a tape as a test. The problem is that the essential property of
the tape is that it can be extended in both directions, so at the first sight, the
Turing machine interaction does not seem not fit naturally into the inductive
testing framework.

Another look at the acceptance condition for Turing machines offers a solution.
A Turing machine X accepts a word t ∈ Σ∗ if and only if reaches a final state, in
any configuration, after having started a computation with the head just to the
left of the word t, presented on the tape. — So the accepted words initially extend
to the right of the head. The left part of the tape is only used for intermediary
computation.

A Turing machine can thus be modeled following the idea of a pushdown au-
tomaton: the tape to the left of the head can be viewed as a stack, and treated as
a part of the state; the tape to the right of the head can be construed as another
stack, containing the actual test. Unlike a pushdown automaton, a Turing ma-
chine allows words in the same alphabet in both stacks. A pushdown automaton
had two disjoint alphabets, Γ and Σ for the left and the right stack, respectively.
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Moreover, the right “stack” of a pushdown automaton is not a real stack, since
it only allows popping.

A Turing machine can thus be viewed as a machine with two real stacks,
representing the two parts of its tape, on the two sides of the head. Just like a
pushdown automaton, besides the alphabet Σ, it may allow non-terminal sym-
bols, at least �, used in computation, but not in the tested words.

A nondeterministic Turing machine is thus a coalgebra X
〈Φ,∂〉�� 2×℘f (X ×

Γ × {�, �})Γ , where Γ ⊇ Σ + {�}. As before, the component X
Φ �� 2 marks

the final states, whereas the transition function X×Γ
δ �� ℘f (X×Γ×{�, �})

assigns to each state and each input the possible next states, outputs, and the
direction for the move of the head. We represent the move of the head by popping
a symbol from one stack and pushing it onto the other.

6.2 Branching Semantics: Set-Tree Testing

Here not only are the universes S and T identical, but we also take the logic
monad T to be the same as the choice monad S: they are both the finite powerset
℘f : Set �� Set. So both the space of the choices ℘fX and the logic of tests
℘fA are free semilattices. But the two lattices will be used differently: the former
as a join semilattice (because the process can continue with this computation
or with that computation. . . ), and the latter as a meet semilattice (because the
testing formula is a conjunction).

Remark. The same class of computational behaviors could be formalized by
taking either of the monads T and S, or both of them, to be the diagonal functor
ΔX = X × X . This would just mean that nondeterministic branching would
always be binary, and that tests would be just binary conjunctions. Associativity,
commutativity and idempotence of these operations would be imposed later. The
intermediary options would be to take the functor ℘≤2X = {x0, x1} of (at most)
two-element subsets, imposing commutativity and idempotence, and leaving out
associativity.

Two-way simulation. In the simplest case TA = ℘fA. The tests are thus in
the form

t ::= � | t ∧ t · · · ∧ t | a.t

where ∧ is an associative, commutative, idempotent operation with unit �. The
semantics (1-3) becomes

(x |= �) = �

(x |=
n∧

i=1

ti) =
n∧

i=1

(x |= ti)

(x |= a.t) =
∨

y∈δκ(x,a)

(y |= t)
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The functors generating data and processes are thus

FA = ℘fA + Σ ×A

GX = ℘f (Σ ×X)

Proposition 2. Let Θ be the initial F -algebra and Ξ the final G-coalgebra. Let
the partial order on X be defined by

x ≤ y ⇐⇒ ∀t ∈ Θ. (x |= t) ≤ (y |= t) (6)

Then the process x can be simulated by the process y if and only if x ≤ y, i.e.

x ≤ y ⇐⇒ ∀a ∈ Σ∀x′ ∈ δ(x, a)∃y′ ∈ δ(y, a). x′ ≤ y′ (7)

Bisimulation. Adding negation to the logic

t ::= � | t ∧ t · · · ∧ t | ¬t | a.t

i.e. testing by

FA = ℘fA + A + Σ ×A

the semantics is extended by the clause

(x |= ¬t) = ¬(x |= t)

This gives an interesting strengthening of the testing power.

Proposition 3. The equivalence

x ∼ y ⇐⇒ ∀t ∈ Θ. (x |= t) = (y |= t)

means just that the processes x and y are bisimilar

x ∼ y ⇐⇒ ∀a ∈ Σ

(∀x′ ∈ δ(x, a)∃y′ ∈ δ(y, a). x′ ∼ y′) ∧
(∀y′ ∈ δ(y, a)∃x′ ∈ δ(y, a). x′ ∼ y′)

Strong Bisimulation by Stone Duality. Strong bisimilarity is classified by
the final coalgebra Ξ �� ℘f (Σ × Ξ). Using the restriction of the Stone du-
ality S � C : Setop �� caBa from Stone spaces and Boolean algebras to sets
(discrete spaces) and complete atomic Boolean algebras, allows applying Corol-
lary 1. Setting FA = C℘f (Σ × SA) allows a representation of the bisimulation
classes as characters of the Boolean algebra Θ = μA.FA.

7 Summary, Related and Future Work

We have proposed combining coalgebras as models of processes with algebras
as models of their testing regimes via logical connections between the two, in
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order to realize models that capture the interactions of processes with the data
on which they operate, as well as to model the processes themselves. Our Main
Thereom 1 is the key to this approach. In addition, we have illustrated our ap-
proach with standard examples: finite automata, pushdown automata and Turing
machines, as well as results that show how our approach captures simulation and
strong bisimulation of processes in concurrency.

There is a wealth of work using duality theory – especially Stone Duality –
emanating from the seminal work of Abramsky [16] and the work on coalgebras
exemplified by Rutten’s [17] and the work of Plotkin and Turi [18]. None of these
works has the same aims as our work. Indeed, the work along this line has been
aimed at achieving a setting in which both operational and denotational models
of the same language or process algebra could be presented and related.

The closest work to what we have presented is that of Kupke, Kurz and Pat-
tinson [19] and of Bonsangue and Kurz [20]. The former uses similar theoretical
machinery – but restricted to duality theories, and applies it to the study of fini-
tary modal logics as specification languages for Set-coalgebras. The latter also
models transition systems as coalgebras, and then uses a duality to arrive at a
logic for the transition system. Their main result is the soundness, completeness
and expressiveness of the logic. They also extend to the setting of Vietoris coal-
gebras on topological spaces, and apply it to derive adequate logics on posets,
sets, spectral spaces and Stone spaces. The logics in these works employ the
usual modalities, possibility and necessity. In addition, the results rely heavily
on the duality theory to transfer initial algebras to final coalgebras and back.

As we stated in earlier, our approach has a rather different goal, and em-
ploys weaker assumptions. Our goal is to understand the interactions of a state
machine and the data on which it operates during computation. These are fun-
damentally different objects – programs are executed, but data are not. Our
work is based on logical connections, and does not require a duality theory. In
fact, one could argue that our results begin when the connection used is not a
duality. In addition, we are dealing with process logics where process formulas
are a possible interpretation of tests: a process modality 〈a〉 is a test assigned
to the action a ∈ Σ. That said, we believe the present paper has just begun to
scratch the surface, and a lot remains to do. A primary goal is to present prob-
abilistic systems from this perspective, and, in particular to apply it to extend
the work in [4], as well as to explore the relationship between probability and
nondeterminism, as presented, e.g., in [21].
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Abstract. We formally derive tableau calculi for various lattices. They
solve the word problem for the free algebra in the respective class. They
are developed in and integrated into the ordered resolution theorem prov-
ing framework as special-purpose procedures. Theory-specific and proce-
dural information is included by rewriting techniques and by imposing
the subformula property on the ordering constraints. Intended applica-
tions include modal logic and the automated proof support for set-based
formal methods. Our algebraic study also contributes to the foundations
of tableau and sequent calculi, explaining the connection of distributivity
with the data-structure of sequents and with cut-elimination.

1 Introduction

The development of focused algebraic calculi, the integration of theory-specific
knowledge, is an important, but difficult task in automated deduction. For com-
plex theories, when axiomatic reasoning is hopeless, it is indispensable to derive
theory-specific inference rules in a systematic way from a given axiomatisation.
Recently, such a derivation method has been proposed for the ordered resolu-
tion framework [12] and applied to algebraic structures of considerable com-
plexity [13, 14, 15]. This includes lattice-based calculi for sets with applications
to formal methods like B or Z. While these calculi treat elementary theories,
the question of integrating special-purpose (decision) procedures for equational
reasoning into the ordered resolution framework is also very interesting.

A second, more technical question is the following. Using the derivation
method, resolution-like calculi at the lattice-level have been constructed within
resolution at the logical meta-level by encoding multisets—the natural data-
structure for clauses—at the lattice-level in the ordering constraints for reso-
lution [13, 14]. Therefore, can one in a similar way enforce the construction of
tableaux within resolution by encoding the subformula property?

A third, more foundational question follows from the observation that a cut-
like rule for lattices characterises precisely distributivity of the lattice (cf. [11]).
So what is the connection with the sequent calculus? How is distributivity
handled there? What is the algebraic role of the structural rules and of cut-
elimination in the context of lattices?

The present paper answers these questions. First, we show how to integrate
tableau-like decision procedures for semilattices and distributive lattices into the
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ordered-resolution framework. Second, we extend these procedures to further in-
teresting cases: to Boolean lattices, to certain modal logics and to operational
reasoning with sets. Third, we show that the derivation method supports a nat-
ural synthesis of tableaux by integrating rewriting techniques and by encod-
ing the subformula property in the ordering constraints of resolution. The trick
is to develop tableaux using negative literals. This allows one to capture also
demonic choice, which is essential for tableaux but not expressible by rewrit-
ing. Fourth, we provide new insights into the correspondence between algebra
and logic by comparing word problems for lattices with sequent calculi and
tableaux. Our analysis of the distributivity law explains the algebraic role of
the data-structure of sequents and the cut rule in the sequent calculus. Our
derivation yields not only an algebraic reconstruction, but also a novel alge-
braic completeness proof of propositional tableaux. In particular, this formally
demonstrates that the rules of the sequent calculus are independent in a strictly
formal sense. Finally, the paper is not only reconstructive. The integration of
tableaux into the ordered resolution framework makes strong redunancy elimi-
nation techniques available to tableaux. This may be a considerable benefit in
applications.

Here, we can only sketch some proofs. An extended version can be found at
the author’s web-site. We also assume knowledge on tableau and sequent calculi
(we identify tableaux with cut-free sequent calculi). See [10, 3] for introductions.

2 Resolution and Redundancy

This section revisits some well-known results, most of them originating in [9]. Let
TΣ(X) be a set of terms with signature Σ and variables in X . A term is ground if
no variable occurs in it. An atomic formula is an expression p(t1, . . . , tn), where
p is an n-ary predicate symbol and t1, . . . , tm ∈ TΣ(X). A literal is an atomic
formula φ (positive literal) or its negation ¬φ (negative literal). A clause is a
finite multiset of literals. A clause is positive (negative) if it consists solely of
positive (negative) literals or if it is empty. A Horn clause contains at most one
positive literal. A clause set is a set of clauses. If Γ is a clause and φ a literal,
we write Γ, φ instead of Γ ∪ {φ}. We denote clauses by Γ −→ Δ, where Γ (Δ)
is a multiset of negative (positive) literals.

We consider calculi constrained by syntactic orderings. This may considerably
narrow the search space. Term and a literal orderings ≺ are well-founded total
orderings on the respective ground expressions. They are lifted to non-ground
expressions by stipulating e1 ≺ e2 iff e1σ ≺ e2σ for all ground substitutions σ. A
literal l is maximal with respect to a multiset Γ of literals if l �≺ l′ for all l′ ∈ Γ .
It is strictly maximal with respect to Γ if l �� l′ for all l′ ∈ Γ . The non-ground
orderings are still well-founded, but need no longer be total.

Literal orderings are extended to clauses, measuring clauses as multisets of
literals and comparing them via the multiset extension of the literal ordering.
A literal is assigned greater weight when it is negative than when it is pos-
itive. See Section 5 for more details. A clause ordering inherits totality and
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well-foundedness from the literal ordering. Again, the non-ground extension need
not be total. We usually denote all syntactic orderings by ≺.

Definition 1 (Ordered Resolution Calculus). Let ≺ be a literal ordering.
The ordered resolution calculus OR consists of the following deduction inference
rules. The ordered resolution rule

Γ −→ Δ, φ Γ ′, ψ −→ Δ′

Γσ, Γ ′σ −→ Δσ, Δ′σ
, (Res)

where σ is a most general unifier of φ and ψ, φσ is strictly maximal with respect
to Γσ, Δσ and maximal with respect to Γ ′σ, Δ′σ. The ordered factoring rule

Γ −→ Δ, φ, ψ

Γσ −→ Δσ, φσ
, (Fact)

where σ is a most general unifier of φ and ψ and φσ is strictly maximal with
respect to Γσ and maximal with respect to Δσ.

In all inference rules, side formulas are the parts of clauses denoted by capi-
tal Greek letters. Literals occurring explicitly in the premises are called minor
formulas, those in the conclusion principal formulas.

Let S be a clause set and ≺ a clause ordering. A clause Γ is ≺-redundant
or simply redundant in S if it is a semantic consequence of instances from S
which are all smaller than Γ with respect to ≺. A ground inference is redun-
dant in S if either the maximal premise is redundant or else its conclusion
is a semantic consequence of instances from S which are all smaller than the
maximal premise with respect to ≺. An inference is redundant if all its ground
instances are. Closing S under OR up to redundant inferences and eliminating
redundant clauses on the fly transforms S into an ordered resolution basis (an
orb).

As usual, an OR-proof is a finite tree whose nodes are labelled by clauses and
whose edges are determined by OR-inferences. An OR-refutation from a clause
set S is an OR-proof with all leaves in S and with the empty clause as root.

Proposition 1

(i) Orbs of inconsistent clause sets contain the empty clause.
(ii) Fair OR-implementations refute inconsistent clause sets in finite time.
(iii) For every inconsistent clauses set containing an orb there is a refutation in

which no OR-inference has both premises from the orb.

3 The Derivation Method

We now recall the derivation method for focused calculi with theory-specific in-
ference rules from [12]. It is of general interest for compiling algebraic knowledge
into resolution-based theorem proving. It has a syntactic and a semantic side.
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At the syntactic side, consider a partition of some clause set into a set T of
theory clauses and a set S of non-theory clauses. We intend to internalise T into
a set of derived inference rules in refutations. The (ground) chaining rule

Γ → Δ, a ≤ b Γ ′ → Δ′, b ≤ c

Γ, Γ ′ → Δ, Δ′, a ≤ c
,

for instance, internalises the instance a ≤ b, b ≤ c → a ≤ c of the transitivity
law in a two-step resolution proof. In general, this internalisation is possible if
there exists an OR-refutation of S ∪ T in which theory clauses are “sufficiently
separated” to admit proof patterns in which all but one literal of a theory clause
can successively be consumed by non-theory clauses. While in the case of non-
ordered resolution such theory resolution rules can quite easily be established,
here, the permutation-invariance of refutations is strongly restricted by the or-
dering constraints. This makes the extraction of such patterns non-trivial. See
for instance [14] for a general discussion. Here, however, due to our special prob-
lem structure, we need only assume that the theory clauses form an orb. Then,
by Proposition 1, they are sufficiently separated.

These observations suggest the following three-step scenario: For a given the-
ory specification T , (1)construct an orb of T , (2) extract focused inference rules
from the interaction of non-theory clauses with the orb and (3) lift ground in-
ference rules to the non-ground level.

An essential feature is the modularity of orb constructions. Incrementing a
theory specification, an orb need not be recompiled. Only the effect of the new
clauses on the orb must be determined.

At the semantic side of the derivation method, we use two ways to integrate
declarative and procedural algebraic knowledge. First, by selecting an appropri-
ate theory specification. Here, in particular, by a characterisation of distributiv-
ity in terms of a cut-rule. Second, by choosing the syntactic orderings ≺. We will
essentially enforce tableau rules by encoding the subformula property.

4 Lattices

We study word problems for free lattices. Our signature is Σ = {�,�}. Its ele-
ments are varyadic operation symbols denoting the lattice join and meet opera-
tions. Besides equality, ≤ is the only (binary) predicate symbol of our language.
It denotes a partial ordering. As usual, a join semilattice is a poset closed under
finite least upper bounds or joins. Dually, a meet semilattice is closed under finite
greatest lower bounds or meets. (In lattice theory, the dual of a statement is ob-
tained by interchanging joins and meets and converting the ordering.) A lattice
is a poset that is both a join and a meet semilattice. It is distributive if (cut)
holds (see below). See [11] for further discussion, including the relevance of (cut)
to lattice-word problems and resolution. A similar non-standard axiomatisation
of distributivity has been used earlier in [7].

The antisymmetry law of a poset can be given a special treatment. We only
need it for decomposing an identity s ≈ t between lattice terms into the equiva-
lent expression s ≤ t ∧ t ≤ s. This can be done as a preprocessing, for instance
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during the transformation to clause normal form. We thus eliminate the predicate
symbol ≈ from our language and use only the pre-ordering axioms of reflexivity
and transitivity. Consider the following clausal axioms.

−→ x ≤ x, (ref)
x ≤ y, y ≤ z −→ x ≤ z, (trans)

−→ x � y ≤ x, −→ x � y ≤ y, (lb)
x ≤ y, x ≤ z −→ x ≤ y � z, (glb)

−→ x ≤ x � y, −→ y ≤ x � y, (ub)
x ≤ z, y ≤ z −→ x � y ≤ z, (lub)

x1 ≤ y1 � z, x2 � z ≤ y2 −→ x1 � x2 ≤ y1 � y2. (cut)

The class of join semilattices, meet semilattices, lattices and distributive lattices
are axiomatised by the sets

J = {(ref), (trans), (lub), (ub)}, M = {(ref), (trans), (glb), (lb)},
L = J ∪M, D = L ∪ {(cut)}.

Joins and meets are associative, commutative, idempotent (x�x = x = x�x) and
isotone in the associated ordering. We will henceforth consider all inequalities
modulo associativity and commutativity. The similarities between the rules in
J , M , D and those of the sequent or tableau calculus are already quite apparent.
(glb) and (lub) are similar to the right conjunction and left disjunction rule, the
similarity between (cut) and the cut rule is evident. (glb) and (lub) will later be
transformed into equivalent, but more meaningful rules that correspond to the
left conjunction and right disjunction rules.

Let K be some variety of lattices. The word problem for K is the following:
Determine if an identity s ≈ t over some set of constants (or generators) in the
language for K holds in K or, equivalently, in the free algebra in K. This is the
case iff s and t are congruent modulo the equational axioms of K. A solution to
the word problem is an algorithm that decides the problem for all inputs. Since
s ≤ t ⇔ s � t = t ⇔ s � t = s holds, respectively, for join and meet semilattices,
we identify word and reachability problems as well as inequalities and identities.

In the context of ordered resolution, instead of solving some set of positive
identities, we attempt to refute a set of negative ones. Now, when the class
K is axiomatised by an orb consisting of a set of Horn clauses, the resolution
process has a particularly simple structure. First, ordered factoring is never
applicable. Second, the theory clauses serve as (independent) closure rules that
generate new negative clauses from old ones. Third, because of this particular
structure, the orb must contain a positive literal whenever the process generates
the empty clause. To obtain a decision procedure, it suffices that the input clause
is maximal with respect to the syntactic ordering in the closure induced by the
process and that the number of ground clauses smaller than the input clause is
finite. It is well-known that the free semilattice, distributive lattice and Boolean
lattice generated by a finite set of constants is finite (cf [1]). Obviously, therefore,
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one should try to construct a syntactic ordering that is compatible with these
conditions. This is the purpose of the following section.

5 Syntactic Orderings

There is a natural syntactic ordering for the sequent calculus: any ordering en-
forcing the subformula property. Here, any AC-compatible simplification order-
ing will serve our purposes. Roughly, an ordering is AC-compatible if it re-
spects AC-equivalence classes. Orderings that are appropriate for our purposes
exist [2]. A simplification ordering contains in particular the subterm ordering:
Every term is greater than each of its subterms. One can for instance choose an
AC-compatible ordering with a precedence in which the join and meet operation
are maximal and identical. Let ≺ be such an ordering. Like in Section 2, we now
extend this ordering to literals and clauses.

Let B be the two-element Boolean algebra with ordering <B. Let M = G×B×
B×G, where G denotes a multiset of generators. Let A be a set of atoms occur-
ring in some clause C = Γ −→ Δ. The ordering ≺1⊆M×M is the lexicographic
combination of ≺ for the first and last component of M and <B for the others.
A ground literal measure (for clause C) is the mapping μC : A −→ M defined
by μC : φ �→ (tν(φ), p(φ), s(φ), tμ(φ)) for each (ground) literal φ ∈ A occurring
in C. Hereby tν(φ) (tμ(φ)) denotes the maximal (minimal) term with respect
to ≺ in φ. p(φ) = 1 (p(φ) = 0) if φ occurs in Γ (in Δ). s(φ) = 1 (s(φ) = 0) if
φ = s < t and s  t (s ≺ t). The (ground) literal ordering ≺2⊆ A×A is defined
by φ ≺2 ψ iff μC(φ) ≺1 μC(ψ) for φ, ψ ∈ A. Hence ≺2 is embedded in ≺1 via
the literal measure. The ordering ≺1 is total and well-founded by construction.
Via the embedding, ≺2 inherits these properties. See [12] for a motivation of the
components arising in a similar ordering. Intuitively, the syntactic ordering en-
forces that all non-theory clauses are split into clauses containing only subterms
by the clauses in D. This yields the subformula property of the sequent calculus.

All orderings are extended to the non-ground case and to clauses as described
in Section 2. In unambiguous situations we will denote them all by ≺.

In [13, 14], a similar construction enforces resolution-like calculi at the lat-
tice level within ordered resolution at the meta-level. The specific difference is
that there the term ordering encodes multisets as the natural data-structure
of clauses, after transforming all lattice terms to such a format. This yields
resolution-like rules. Consequently, the derivation method is quite flexible. The
procedural behaviour of the algebraic calculi under construction can directly be
influenced by the choice of the syntactic ordering.

6 Tableau Calculi

We now present tableau calculi as solutions to the word problems for free semi-
lattices and distributive lattices. Using standard techniques, these calculi can
be lifted to the non-ground case. As usual in resolution-based theorem proving,
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queries are given as negative literals and then refuted by the calculi. The calculi
are formally derived in the next two sections.

Definition 2 (Distributive Lattice Tableau). Let ≺ be the literal and clause
ordering of Section 5. The tableau calculus for (finite) distributive lattices DT
consists of the following inference rules.

Γ, x ≤ x −→
Γ −→ , (Ref)

Γ, x ≤ y � z −→
Γ, x ≤ y, x ≤ z −→ , (MR)

Γ, x ≤ w � (y � z) −→
Γ, x ≤ w � y, x ≤ w � z −→ , (EMR)

Γ, x � y ≤ z −→
Γ, x ≤ z −→ , (ML)

Γ, x � y ≤ z −→
Γ, x ≤ z, y ≤ z −→ , (JL)

Γ, w � (x � y) ≤ z −→
Γ, w � x ≤ z, w � y ≤ z −→ , (EJL)

Γ, x ≤ y � z −→
Γ, x ≤ z −→ . (JR)

In all rules, the minor formula is maximal in the premise. All rules are meant
modulo associativity, commutativity and idempotence.

(Ref) stands for reflexivity, (MR) for meet right, (EMR) for extended meet right,
(ML) for meet left, (JL) for join left, (EJL) for extended join left, (JR) for join
right. The respective join and meet rules are completely dual. There is no variant
of a cut rule (cf. Section 8 for an explanation). Note also the correspondence with
tableau or sequent calculus rules. See finally Section 10 for a discussion of the
role of (EJL) and (EMR).

Definition 3 (Semilattice Tableaux). Under the conditions of Definition 2,
the inference rules of the tableau calculi JT and MT for join and meet semilat-
tices are restrictions of the DT-rules to join and meet semilattice terms.

Thus in particular, JT consists solely of variants of the rules (JL) and (JR), MT
of variants of (ML) and (MR). JT and MT are dual and of course JT can be
used also for the meet semilattice, dualising meet semilattice identities.

7 Constructing the Orb

We now perform the first step of the derivation of the tableau calculi. Our input
specifications are J , M and D. With the orderings of Section 5, we compute the
respective orbs; the OR-closures modulo redundancy elimination. Appealing to
duality prevents us from repetitions.

We first index clauses according to their orientation under ≺: i (increasing) if
the antecedent is smaller than the succedent, d (decreasing) in the converse case
and ? if orientation must be instance-wise. Note that all clauses in J , M and D
are indexed by i, except (trans) and (cut), which are indexed by ?.
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Consider now the Horn clauses

x ≤ w � y, x ≤ w � z −→i x ≤ w � (y � z), (emr)
x ≤ y � z −→d x ≤ y, (imr)

x ≤ w � (y � z) −→d x ≤ w � y, (eimr)
x ≤ z −→i x � y ≤ z (ml)

and their duals (ejl), (ijl), (eijl) and (jr). Let

J ′ = {(ref), (lub), (imr), (ml), (cut)}, M ′ = {(ref), (glb), (ijl), (jr), (cut)},
D′ = J ′ ∪M ′ ∪ {(emr), (eimr), (ejl), (eijl), (cut) }.

In particular, restricted variants of (cut), for instance x1 ≤ z, x2 � z ≤ y2 −→
x1 � x2 ≤ y2 occur in M ′ and J ′. Moreover, (trans) is a restriction of these
(cut) rules, forgetting the lattice term structure. Now—up to the extended rules
(ejl), (eijl), (emr) and (eimr)—all rules are reminiscent to those in the sequent
calculus. The inverse rules (imr) and (ijl) also hold in the sequent calculus by
the inversion lemma (they are derivable with and admissible without the cut
rule [10]). Consequently, all rules in J ′ and M ′ immediately correspond to rules
of the sequent calculus. The extended rules are combinations of the non-extended
rules and isotonicity of join and meet. They also encode the effect of distributivity
in absence of sequents. See Section 10 for further discussion.

The following lemma shows that the members of J ′, M ′ and D′ are indepen-
dent in a strictly formal sense. By the above correspondence, also the rules of
tableau and sequent calculi are therefore independent.

Lemma 1. Let ≺ be the literal ordering defined in Section 5.

(i) M ′ is an orb for meet semilattices.
(ii) J ′ is an orb for join semilattices.
(iii) D′ is an orb for distributive lattices.

We always implicitly normalise with respect to idempotence of join and meet and
consider terms modulo associativity and commutativity.

Proof. The proofs consist of three steps. First, we orient the rules in J , M and
D with respect to ≺. Second, we derive the rules in J ′, M ′ and D′ in OR. Third,
we show that all conclusions of (ground instances of) theory/theory inferences
in OR with respect to J ′, M ′ and D′ are redundant. Here, we show only some
inferences. The complete case analysis is included in an appendix.

Orientation has already been described and the derivation of the rules of J ′,
M ′ and D′ from those of J , M and D is straightforward. So it remains to show
that these sets do indeed form orbs.

(ad i). As an example, consider the inference between (ml) and (imr). It is
depicted in the following diagram.
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a ≤ c � d a � b ≤ c

a ≤ c � d

a � b ≤ c � d
ml

a � b ≤ c � d

a � b ≤ c

imr

a ≤ c
imr ml

The upper part of the diagram is the resolution step, the lower part shows a
smaller proof of the resolvent using (imr) and (ml).

As a second example, consider the inference

−→i a � c ≤ a � c a ≤ b, c � b ≤ c � b −→d a � c ≤ b � c

a ≤ b −→i a � c ≤ b � c

between (ref) and (cut), that yields isotonicity of meet. But (ml) yields→ a�c ≤
b and → a � c ≤ c from → a ≤ b and from → c ≤ c, that is (ref). Using (glb),
we obtain a � c ≤ b � c from these rules. Thus we can prove the isotonicity
clause already using (ml), (glb) and (ref). All these rules are indexed also with i.
Therefore in every proof, an inference using the isotonicity rule can be replaced
by a proof with members of M ′, whence the isotonicity clause is entailed by
smaller instances from M ′ and therefore redundant. The analysis of the other
resolution steps arising from M is similar.

(ad ii) This follows by duality from (i).
(ad iii) As an example, consider the resolution step between (emr) and (eimr).

It is shown in the following diagram.

a ≤ d � b, a ≤ d � c a ≤ d � b

a ≤ d � b, a ≤ d � b

a ≤ d � (b � c)
emr

a ≤ d � (b � c)

a ≤ d � b

eimr

The resolvent is a tautology. The remaining steps are similar. ��

Proposition 1(iii) and Lemma 1 immediately imply the following consequence of
independence, which is essential for the arguments in the following section.

Corollary 1. For every inconsistent clause set containing J ′, M ′ or D′ there
exists a refutation in which no OR-inference has both premises from this set.

Continuing our discussion from Section 4 and Section 5, we still have no solu-
tion to the respective word problem, since resolution inferences with (cut) may
introduce new variables (remind that (cut) is indexed with ?) and lead to non-
isotone proofs. This is analogous to the sequent calculus, where propositional
decidability depends on cut elimination. We will now show an algebraic variant.
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8 Deriving the Tableau Rules

We now derive the inference rules of DT from OR-derivations with D′. Our main
assumptions are refutational completeness of OR and the fact that our ordering
constraints rule out all resolution inference with both premises from the orb
(Corollary 1).

Theorem 1. The tableau calculus DT solves the word problem for the free dis-
tributive lattice: For every input s ≤ t →, such that s ≤ t holds in the free
distributive lattice generated by the constants in s and t, there exists a refutation
in DT.

Proof. Consider a refutation of an input s ≤ t → in presence of the members
of D′. By Corollary 1, there are no inferences for which both premises are from
D′. Moreover, by our discussion in Section 4 all clauses that are generated in
the resolution process are again negative (or empty). We can therefore restrict
our attention to non-theory clauses of this form. Also, since D′ contains solely
Horn clauses, the refutation does not contain factoring steps.

We therefore need only consider ordered resolution inferences between nega-
tive non-theory clauses and members of D′. The extraction of inference rules is
very simple, but there are some cases to inspect.

(case i) Resolution of a clause Γ, a ≤ a −→ and (ref) is

−→ a ≤ a Γ, a ≤ a −→
Γ −→ ,

where, due to the constraints of ordered resolution, the identity a ≤ a majorises
Γ . Internalising (ref) immediately yields the rule (Ref).

(case ii) Resolution of a clause Γ, a ≤ b � c −→ and (glb) is

a ≤ b, a ≤ c −→ a ≤ b � c Γ, a ≤ b � c −→
Γ, a ≤ b, a ≤ c −→ ,

where a ≤ b�c is maximal in the second premise. Internalising (glb) immediately
yields (MR). The fact that in this rule the left-hand side of an identity is split
shows the necessity to consider a non-empty Γ .

(case iii) Resolution of a clause Γ, a ≤ b � (c � d) −→ and (emr) is

a ≤ b � c, a ≤ b � d −→ a ≤ b � (c � d) Γ, a ≤ b � (c � d) −→
Γ, a ≤ b � c, a ≤ b � d −→ ,

where a ≤ b � (c � d) is maximal in the second premise. This yields (EMR).
(case iv) The antecedent of (imr) is greater than the succedent according to

≺ and never satisfies the ordering constraints of ordered resolution with a clause
with empty succedent. Therefore it does not contribute an inference rule.

(case v) For (eimr), the situation is analogous to (case iv).
(case vi) Resolution of a clause Γ, a � b ≤ c −→ and (ml) is

a ≤ c −→S a � b ≤ c Γ, a � b ≤ c −→
Γ, a ≤ c −→ ,

where a � b ≤ c is maximal in the second premise. This yields (ML).
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(case vii) to (case xi), yielding the inference rules (JL), (EJL) and (JR) from
the clauses (lub), (ejl), (ijl), (eijl) and (jr) are dual to (case ii) to (case vi).

(case xii) Resolution of a query Γ, a � b ≤ c � d −→ with (cut) is

a ≤ c � e, b � e ≤ d −→ a � b ≤ c � d Γ, a � b ≤ c � d −→
Γ, a ≤ c � e, b � e ≤ d −→ .

We show by induction on the distance from such an inference to the empty clause
and the cut rank of the lattice term, that is the size of the minor term which
is cut out, that this inference is not needed. In proof-theoretic terms we show a
version of cut elimination. Since the proof is standard we give only a sketch and
refer to [6, 10] for details. In particular, for simplicity, we assume that c = 0.

(case α) Let e be a generator. Then a ≤ e must be of the form a′ � e ≤ e and
b� e ≤ d must either be of the form b′ �d� e ≤ d or d = e such that b�d ≤ d in
order to eliminate both identities from the conclusion. So also a � b ≤ d either
is of the form a′ � b � d ≤ d or of the form a � b′ � d ≤ d and already the minor
formula of the right-hand premise can be eliminated using (ML) and (Ref).

(case β) Let e = e1 � e2. Then we may assume that (MR) has been applied to
the identityy a ≤ e1�e2, which transforms the conclusion of the above inference
into Γ, a ≤ e1, a ≤ e2, b � e1 ∧ e2 ≤ c −→. Using the induction hypothesis we
can then argue that this sequent has been obtained from the right-hand premise
of the above inference by two smaller cuts, respecting the ordering constraints.
Hence in any case the above inference is not needed.

Since we have considered all clauses from D′ and all these clauses produce
conclusions with empty succedent, we have compiled a refutationally complete
set of inference rules for a negative input from the theory specification. The
inference rules yield a decision procedure, since, as a simple inspection shows,
all conclusions are smaller than the (maximal) premise and the number of terms
that is generated by the procedure is bounded by the subterms of the input.
Thus our calculus has the subterm property. ��

It is obvious that due to the copying by the extended rules, the procedure runs
at least in exponential time with respect to the size of the input. This is what
can be expected for distributive lattices.

Corollary 2. The tableau calculi JT and MT solve the word problem for the free
join and meet semilattice.

Again, the procedures run in exponential time, which is sub-optimal, since the
word problem for lattices can be solved in polynomial time (cf. [5]). They will,
however, become polynomial when renaming techniques and data-structures like
union-find are used. Note that also Whitman’s algorithm [16] for the word prob-
lem for free lattices is exponential without such refinements.

9 Three Extensions

Our previous results are the basis for interesting applications. We now sketch
three simple extensions of the tableau calculus for distributive lattices. First, an
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extension to Boolean lattices, second to certain basic modal logics and third to
operational reasoning with sets.

The extension to Boolean lattices is straightforward.

Corollary 3. In a lattice with 0 and 1, let x′ denote the complement of x, that
is x′ � x = 1 and x′ ∧ x = 0. The rules of DT together with the rules

Γ, x ∧ y′ ≤ z −→
Γ, x ≤ y � z −→ ,

Γ, x ≤ y′ � z −→
Γ, x ∧ y ≤ z −→ ,

Γ, 0 ≤ x→
Γ → ,

Γ, x ≤ 1 →
Γ → ,

for eliminating complements and axiomatising zero and one solve the word prob-
lem for the free Boolean lattice1.

The complement rules just encode the usual Galois connections x � y′ ≤ z ⇔
x ≤ y � z and x ≤ y′ � z ⇔ x � y ≤ z as inference rules.

Another interesting case is the extension to distributive and Boolean lattices
with operators. Operators are mappings h : L → L, where L is a distributive
or Boolean lattice, that are strict join-homomorphisms, that is, they satisfy
h(0) = 0 and h(x � y) = h(x) � h(y). Alternatively, we could also consider co-
strict meet-homomorphisms, that is mappings satisfying h(1) = 1 and h(x�y) =
h(x) � h(y). It is well-known that the first kind of mappings corresponds to
modal diamond operators and the second one to modal box operators. There is
also a strong connection with isotone predicate transformers, since both kinds
of homomorphisms are isotone. Operators can be integrated in our tableaux by
standard techniques. The main idea is to push them to the leaves of lattice terms,
using the laws for homomorphisms and strictness. Terms of the form h(s � t),
when h is a join-homomorphism, can simply be renamed, since φ(s) ⇔ ∃x.(x =
s ∧ φ(x) holds in first-order logic. Thus an expression Γ, h(r � s) ≤ t →, for
instance, can be replaced by the clause Γ, c ≤ r � s, r � s ≤ c, h(c) ≤ t→, where
c is a new constant.

Atomic distributive lattices may serve as a calculus for operational reasoning
with sets [14, 15]. Atoms are those elements of a lattice that are situated imme-
diately above the zero. In every atomic distributive lattice with zero, atoms can
be axiomatised by the identities α �≤ 0 and α ≤ x� y ⇔ α ≤ x∨α ≤ y, where α
denotes an atom. In the set-theoretic model of atomic distributive lattices, atoms
correspond to singleton sets, whence to elements of a set. The expression α ≤ x
then reads as “α is an element of the set x”. A lattice with zero is atomic iff every
element can be expresses as a least upper bound of some set of atoms. In distribu-
tive lattices with zero, atomicity is equivalent to x �≤ y ⇔ ∃α.(α ≤ x∧α�y ≤ 0).
This equivalence can be used for hypothesis elimination, that is to transform ar-
bitrary input clauses into positive ones (which are then negated for refutation).
The second axiom for atoms yields a tableau rule that further splits identities.
In particular, every finite Boolean lattice is atomic. The atomicity axiom intro-
duces Skolem functions, but in inferences, the respective variables are always
instantiated by subterms of terms occurring the input clause. This yields novel
1 Here we assume that terms containing zeroes and ones are implicitly simplified during

preprocessing, reducing, for instance, s ≤ t � 0 to s ≤ 0 or s � 1 ≤ t to s ≤ t.
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tableau-based decision procedures for the elementary theories of finite atomic
distributive and Boolean lattices, whence for operational element-wise reasoning
with sets. See [14] for a deeper discussion on the connection between atomic
distributive lattices and sets and for related resolution-like calculi. A full formal
treatment of atomic distributive lattices remains beyond the scope of this paper.

10 Discussion

Our solution to the word problem for the free distributive lattice implements
tableaux via rewriting within the ordered resolution framework. This may sur-
prise, since rewriting can only express angelic non-determinism, whereas
tableaux and sequent calculi use also its demonic counterpart. In the sequent
calculus, demonic non-determinism is implemented by shifting terms to the se-
quent level. Here, in contrast, the trick is to develop the tableau in the antecedent
of clauses, where the comma means conjunction. Moreover, the extended rules
essentially handle distributivity. In contrast, sequent calculi handle distributivity
by lifting expressions to the sequent level. Consider, for instance, the following
derivation in some variant of the cut-free sequent calculus. ≤ is now replaced
by the sequent-arrow −→ (both are pre-orderings); x, y and z are propositional
constants.

x, y ∨ z −→ x, z
x, y −→ y, z x, z −→ y, z

x, y ∨ z −→ y, z
x, y ∨ z −→ x ∧ y, z

x ∧ (y ∨ z) −→ (x ∧ y) ∨ z

Lifting formulas to sequents, the distributivity law is implicitly applied to multi-
ply out terms and make the invertible conjunctive rules applicable, whereas the
comma model the disjunctive ones. For a comparison, a proof in DT is

x ∧ (y � z) ≤ (x ∧ y) � z −→
x ∧ (y � z) ≤ x � z, x ∧ (y � z) ≤ y � z −→ (EMR)

x ∧ y ≤ x � z, x ∧ z ≤ x � z, x ∧ y ≤ y � z, x ∧ z ≤ y � z −→ (EJL)

x ≤ x, x ≤ x, y ≤ y, z ≤ z −→ (ML)(JR)

−→ (Ref)

Obviously, the sequent proof synthesises the goal formula, whereas the resolution
proof analyses it. But reading the sequent proof backwards it turns out that both
proofs are essentially the same.

Our algebraic analysis shows that the cut rule of the sequent calculus essen-
tially encodes distributivity, (see also [11] for further discussion). But in the
sequent calculus, distributivity is already included via the shift to sequents. In
the free case, in absence of further relations between generators, there is no need
to derive further consequences of relations (by analytic cut) or even to invent
new constants (by non-analytic cut). Algebraically, therefore, admissibility of
cut in the sequent calculus is very natural. Our reconstruction supports this
intuition with a formal argument. In presence of relations between generators,
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of course, further consequences of these relations must be computed, possibly
using cut: In case of finitely presented distributive lattices, when further rela-
tions between generators exist, resolution steps using (cut) cannot in general
be circumvented. They can even be turned into the central ingredient of the
calculus, as the chaining calculi for distributive lattices show [13]. This has a
correspondence in the sequent calculus, where in presence of assumptions, cut is
often unavoidable.

Our tableau calculi are more focused than mere derivations with the axioms
in J , M or D. For instance, a resolution inference with two instances of (trans)
may eagerly introduce new variables that might be meaningless for a refutation.
In unordered resolution, strategies to avoid such kind of reasoning are well-
known; for instance set of support or theory resolution. But the transfer of these
strategies to ordered resolution is non-trivial, as we have seen. Here, the main
advantage of JT, MT or DT over plain ordered resolution with the orbs J ′, M ′

and D′ is cut elimination. The remaining tableau rules offer no additional effi-
ciency over forbidding theory/theory inferences a priori (for instance by colour-
ing clauses) instead of explicitly testing for redundancy. In general, however, the
specific inference rules can be much more effective than plain resolution with
orbs (cf. [12, 13, 14]). In particular, it follows from our orb construction that the
tableau and sequent rules are independent in a strictly formal sense: they are
elements of an irredundant irreducible basis. This construction is reminiscent to
that of an orthogonal basis of a vector space. Last, but not least, a particular
benefit of the integration of tableaux into the ordered resolution framework is
that the full power of redundancy elimination rules of ordered resolution becomes
available to tableaux.

11 Conclusion

We have used the derivation method from [12] to integrate tableau calculi that
solve lattice-theoretic word problems as special-purpose procedures into the or-
dered resolution framework. In contrast to standard tableau or sequent calculi,
distributivity has not been included by introducing an additional data-structure
of sequents, but by allowing certain splittings below contexts. We have seen that
cut-rules arise naturally in lattice theory in presence of distributivity. They can
be eliminated in the free case, in absence of relations between generators.

Alternative, but different, proof systems are the Genzen systems for distribu-
tive lattices by Font and Verdú [4] and the natural-decuction-style proof systems
for (non-distributive) lattices of Negri and von Plato [8]. In particular, Negri and
Plato show that the axiom of transitivity is not needed in their calculus; a special
case of our cut-elimination property related to distributivity. However, none of
these proof systems have been formally derived and none of them seems com-
patible with the ordered resolution framework.

The derivation of tableaux is only one of several applications of the derivation
method in lattice theory. There are also focused chaining calculi for transitive re-
lations, pre-orderings, semilattices, distributive lattices, Boolean lattices, atomic
distributive lattices and atomic Boolean lattices [12, 13].
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The extensions of our basic procedures to simple modal logics and to rea-
soning with sets demonstrate the potential and modularity of the approach. In
contrast to the usual semantic translation to first-order logic, our novel technique
specifically exploits the underlying algebra. The consideration of more complex
applications, for instance temporal and dynamic algebras and logics, is left for
future work.
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Abstract. Modal Labelled Transition Systems (Modal -LTSs) can be
used to specify system behaviour. They distinguish between required
behaviour and allowed behaviour. This makes Modal -LTSs a suitable
formalism to specify abstractions of a system by over- and under-ap-
proximations. This paper studies an extension to Modal -LTSs by allowing
accelerated -transitions, i.e. transitions labelled with regular expressions.
This permits to represent that a process can reach a state by executing
some sequence of actions, abstracting away the intermediate states. We
show how accelerated transitions improve the expressiveness of abstrac-
tions. Consequently, more liveness properties can be checked.

1 Introduction

Automatic verification techniques, such as model checking, normally require the
exploration of the state space corresponding to a formal specification. These
techniques are quite limited by the size of the state spaces, which may be too
large or even infinite. Abstraction is being widely used to reduce the complexity
of the analysed systems. The main idea is to prove properties for a (small)
abstract system and to infer their satisfaction or refutation in the (large) concrete
original system.

Abstract Model Checking usually integrates the following steps. First, we
depart from a concrete specification, whose state space is too large to generate
or infinite. From the formal specification we extract an abstract state space, for
example by interpreting the concrete operations of the model on smaller data
domains (see, for example [2]). Then we apply model checking on the abstract
system. The results of the abstract model checking can be inferred to the concrete
system following some specific rules. Applying abstraction causes some loss of
information, so it is not always possible to prove the satisfaction or refutation
of some properties. In theses cases, it is necessary to refine the abstractions.

Modal Labelled Transition Systems (or Modal -LTSs) have been used to de-
scribe abstract state spaces. Basically, the transition systems contain two kinds
of transitions or modalities may and must. The may-transitions are used to
represent the possible behaviours of the system, in other words, the behaviours
that can appear in the refinements. Must transitions represent the necessary
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behaviours, the ones that have to appear in all the refinements. The set of possi-
ble behaviours constitutes an over-approximation of the concrete system and the
necessary behaviours an under-approximation. Therefore, abstractions described
by Modal -LTSs doubly approximate the concrete systems. The seminal idea is
due to Larsen and Thomsen [11].

Informally, we can distinguish two sets of properties: safety and liveness. A
safety property expresses that “something bad never happens.” Typical safety
properties are those forbidding “bad” execution sequences on the Modal -LTSs.
Therefore, in order to prove a safety property on an abstract system we would
have to check the possible executions that are related to the may transitions. A
liveness property expresses that “something good eventually happens.” So, typ-
ical liveness properties assert the existence of some desired executions, therefore
its satisfaction will be related by the presence of the suitable must transitions
in the Modal transition system.

Abstraction has been successfully used to prove mainly safety properties. Even
though some frameworks allow the inference of liveness properties their verifica-
tion remains one of the major challenges of abstraction theories [14]. The problem
comes from the lack of guaranteed (required) behaviours. The number of nec-
essary behaviours reduces due to the non-determinism added by abstractions.
This fact makes it difficult to prove liveness properties.

To deal with this problem, we propose a new formalism to represent abstrac-
tions. We enhance Modal -LTSs by allowing must -transitions to match sequences
of actions, which captures the idea that in a finite computation a state can be
reached from a given one. This extension will allow to capture more accurately
abstract systems and therefore to infer stronger liveness properties.

In the next section, we present the definition of the new type of structure
Accelerated Modal Labelled Transition Systems in which must -transitions are
labelled with regular expressions built over the action labels and the usual op-
erators. This new type of transition allows to represent finite computations by
single transitions. A motivating example of accelerated -steps is given in Section 2.
Then, we will present how to generate abstractions with accelerations and we
give the preservation results. In fact, we have proved that the framework is sound
and complete for Propositional Dynamic Logic (PDL [8]); we use a three-valued
interpretation in the sense of [6].

Besides the theoretical foundation of using Accelerated Modal -LTS for specify-
ing abstractions and approximations of behaviour, we present a model checking
algorithm. This algorithm checks whether a PDL formula holds (necessarily or
possibly) for an Accelerated Modal -LTS. So the non-trivial model-checking prob-
lem for PDL on Accelerated Modal -LTSs is decidable.

Our approach to obtain more accurate specifications is novel. The model of
Accelerated Modal -LTS is new as well, which makes the model checking algo-
rithm quite different from usual PDL model checking. Note that our approach
is complementary to approaches that try to eliminate spurious may-behaviour,
like e.g. [10]. The current paper is based on the work presented in [19], which
also contains the full proofs.
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2 Accelerated Modal Transition Systems

Labelled Transition Systems are common structures to define the semantics of
system specifications. Let S be a non-empty set of states and Act a non-empty
set of transition labels, then:

Definition 1. We define a Labelled Transition System (LTS) as a tuple (S, Act,
→, s0), → is a possibly infinite set of transitions and s0 in S is the initial state.
A transition is a triple s

a→ s′ with a ∈ Act and s,s′ ∈ S.

Figure 1 presents a simple resettable counter that, starting from some value
bigger than zero, decreases until it arrives to zero and then ends by executing an
action that informs about its expiration. The counter may be reset to its initial
value at any time (if it has not expired).

0 expired

dec

reset

reset

dec dec

reset

dec

reset

expire

n n− 1 1

Fig. 1. Concrete resettable counter

As we have mentioned in the introduction, Modal Labelled Transition Systems
are more suitable structures to model abstraction, because they allow to describe
incomplete or underspecified systems. Let us recall the definition:

Definition 2. A Modal Labelled Transition System (Modal-LTS) is a tuple (S,
Act, →�,→�, s0) where S, Act and s0 are as above and →�,→� are possibly
infinite sets of (may or must) transitions of the form s

a→x s′ with s,s′ ∈ S,
a ∈ Act and x ∈ {�, �}. We require that every must-transition is a may-
transition ( a→�⊆ a→�).

The requirement a→�⊆ a→� is needed to satisfy the intuitive property that every
necessary behaviour is also possible (see, for example [16]). Note, that every LTS
corresponds to a trivially equivalent Modal -LTS in which →�=→�, we call this
subclass concrete Modal -LTSs.

We will formally describe how to generate abstractions in section 3. We now
present as illustration one possible abstraction of the previous example. Figure 2
represents1 a simple modal abstraction of the resettable counter in which the
values greater or equal to 1 are collapsed to a single abstract state, ’+’. The
relationship between Figure 1 and 2 will be made precise by definition 4.
1 In figures, must-transitions are represented by solid lines and may-transitions by

dashed ones. For clarity, when there is a must transition we do not include the
corresponding may one.
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reset

+ expired0

dec

dec

reset

expire

Fig. 2. Modal Abstraction of a resettable counter

Note that in Figure 2 there is no guaranteed path from ’+’ to ’expired’,
because from state ’+’ there is no must-dec step. The intuitive reason is that
abstract state ’+’ captures both the concrete state ’1’ (where dec would lead to
’0’) as well as states ’> 1’, where dec would lead to ’+’. So, although the concrete
system in Figure 1 has a path to ’expired’, this path is lost in the Modal -LTS
abstraction.

In order to improve this situation, we enhance Modal -LTSs by changing the
definition of must -transitions. We call accelerated must-transitions, those tran-
sitions that condense a sequence of steps into a single one. Accelerated must -
transitions will be labelled by regular expressions σ built over the alphabet Act
and the usual operators ·, ∗ and |, where ’·’ stands for the concatenation opera-
tor, ’|’ is the choice operator, ’∗’ is the transitive and reflexive closure operator.
By �σ� we denote the language generated from σ. Let us see the definition:

Definition 3. An Accelerated Modal-LTS is a tuple (S, Act,→�,→�, s0) where
S, Act and s0,→� are as in the previous definition, and →� is a possibly infinite
set of accelerated must-transitions of the form s

σ→� s′ with s,s′ ∈ S, and σ is
a regular expression. Furthermore, we require:

– Every accelerated must-transition corresponds to a finite sequence of may-
transitions: s

σ→� s′ =⇒ ∃ a0, ..., ai. s
a0→� ...

ai→� s′ ∧ [a0 · · · ai] ∈ �σ�

Basically, the new definition allows must -transitions to be labelled with arbitrary

regular expressions. Examples of correct accelerated -transitions are s
a|b→� s′,

s
a·a∗→ � s′ (which can be abbreviated by s

a+→� s′) and s
a·b∗·a→ � s′.

A trivial result is that every Modal -LTS is an Accelerated Modal -LTS . It
follows from the fact that every must transition is an accelerated must-transition
in which σ is equal to a single action label. The condition that every must -
transition corresponds to a sequence of may-transitions, is similar to the one
imposed in the Modal -LTS and, as we will see in section 4, it will help to define
a consistent logical characterisation of the abstractions.

Figure 3 presents a modal abstraction of the resettable counter with accel-
erated -transitions. Note that the difference with the simple Modal -abstraction
(Figure 2) is that we can capture the fact that from the state ’+’ we can reach the
state ’0’ in an indeterminate but finite number of steps. This is represented by
the accelerated -transition + dec+→ � 0. This fact was not possible to be expressed
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reset

+ expired0

dec

dec+

dec

reset

expire

Fig. 3. Resettable counter with one accelerated must-transition

by the simple Modal -LTS. The relationship between Figures 1 and 3 will be
made precise by definition 6 and 7, in the next section.

3 Accelerated Modal Abstractions

From a concrete system described by an LTS or a Modal -LTS, we can generate
an abstraction by relating concrete states with abstract states. A widely applied
approach uses homomorphic functions to define abstractions. This idea was sug-
gested by Clarke, Grumberg and Long [2]. An alternative approach proposed by
S. Graf etal. and Dams [13, 3] is based on Galois Connections, which allow con-
crete states to be related to more than one abstract state. The Galois Connection
framework gives, in general, more accurate abstractions than the homomorphic
approach, but the latter is conceptually simpler. In this paper, we are going to
use simple mappings (homomorphisms), but we believe that the extension to
more complicated relations can be done following the ideas of [15].

First we are going to present the Modal -LTS based abstraction and then we
will present the extension to transition systems with accelerations. Let us assume
a set of abstract states Ŝ and a total and surjective function from concrete states
to abstract ones, h : S → Ŝ. An abstract value ŝ corresponds to all the states
s for which h(s) = ŝ. Then, we can generate an abstraction from a concrete
system, as follows:

Definition 4. Given an LTS, M = (S, Act,→, s0) and a homomorphism h,
defined as above, we say that the Modal-LTS defined by M̂ = (Ŝ, Act,→�,→�

, ŝ0) is the minimal abstraction by h (denoted by M̂ = minh(M)) if and only if
h(s0) = ŝ0 and the following conditions hold:

– ŝ
a→� r̂ ⇐⇒ ∃ s, r, a. h(s) = ŝ ∧ h(r) = r̂ ∧ s

a→ r

– ŝ
a→� r̂ ⇐⇒ ∀ s.h(s) = ŝ ⇒ (∃ r, a. h(r) = r̂ ∧ s

a→ r)

This definition gives the most accurate abstraction of a concrete system by using
a given homomorphism h, in other words the one that preserves most informa-
tion of the original system. Less precise abstractions would contain more may
transitions and/or fewer must transitions. The relative precision of abstractions
is formalized by the approximation operator !, as follows:
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Definition 5. Given two Modal-LTSs, M = (S, Act,→�,→�, s0) and N =
(S, Act,��, ��, s0) built over the same sets of states and actions; N is an
approximation of M, denoted by M! N , if the following conditions hold:

– s
a→� r =⇒ s

a
�� r

– s
a
�� r =⇒ s

a→� r

These definitions were presented in [15]. Following the definitions we can see
that the transition system of Figure 2 is a correct and minimal abstraction of
the concrete resettable counter. Let us now present the new ideas to generate
more expressive abstractions.

Definition 6. Given an LTS, M = (S, Act,→, s0) and a mapping h : S → Ŝ,
we say that the Accelerated Modal-LTS, M̂ defined by (Ŝ, Act,→�,→�, ŝ0)
is the minimal abstraction by h (denoted by M̂ = minh(M)) if and only if
h(s0) = ŝ0 and the following conditions hold:

– ŝ
a→� r̂ ⇐⇒ ∃ s, r. h(s) = ŝ ∧ h(r) = r̂ ∧ s

a→ r

– ŝ
σ→� r̂ ⇐⇒ (∀ s.h(s) = ŝ ⇒ ∃ r, a0, ..., ai. h(r) = r̂ ∧ s

a0→ ...
ai→ r ∧

[a0 · · · ai] ∈ �σ�)

The condition on may transitions is as in definition 2, however the condition on
must transitions changes. [a0 · · · ai] ∈ �σ� means that the word a0 · · · ai belongs
to the language generated by the regular expression σ. A transition ŝ

σ→� r̂
means that for all s mapped to ŝ there exists an r mapped to r̂ such that we
can go from s to r by a word contained in the language generated from σ.

This definition gives the most accurate abstraction of a concrete system for
a given homomorphism h, in other words the one that preserves as much in-
formation as possible of the original system. Note that the minimal abstraction
for accelerated Modal -LTS is infinite in general, due to the presence of regular
expressions. In practice, one will compute a finite approximation of this. We now
define our formal notion of approximation:

Definition 7. Given two Accelerated Modal-LTSs, M = (S, Act,→�,→�, s0)
and N = (S, Act,��, ��, s0) built over the same sets of states and actions; N
is an approximation of M, denoted by M! N , if the following conditions hold:

– s
a→� r =⇒ s

a
�� r

– s
σ
�� r =⇒ ∃σ0, ..., σi. s

σ0→� · · ·
σi→� r ∧ �σ0 · · ·σi� ⊆ �σ�

The relation ! characterises the precision of the abstractions.M is more precise
than N because it has less (or the same number of) may-transitions and more
accelerated must-transitions or more precise ones. For example, considering only
one accelerated must-transition s

σ→� r, we have s
a→� r ! s

a+→� r ! s
a∗→�

r ! s
a∗|b→ � r ! s �→� r, where in the last case, we mean that there is not any

must transition between s and r.



344 M. Valero Espada and J. van de Pol

Another simple example, in which a transition abstracts away the intermediate
states of a computation, would be s

a→� t
b→� r ! s

a·b→� r.
Concluding this section, we have defined the relationship between a concrete

system modeled by an LTS and an abstraction of it, modeled as an accelerated
Modal -LTS. In particular, it can be checked that Figure 3 is an approximation
(def. 7) of the minimal abstraction (def. 6) of Figure 1. It preserves the informa-
tion that the counter can decrease to 0. This extra information will be used to
infer the satisfaction of some liveness properties from the abstract model to the
concrete. In the next section, we will present some results about the preservation
of properties in this direction.

4 Logical Characterisation

We now investigate which properties can be inferred from abstract systems to
concrete ones. For this purpose, we are going to use Propositional Dynamic
Logic (PDL) which is a branching logic, in the style of HML [9] with regular
expressions, less expressive than μ-calculus [18]. We consider three types of for-
mulae, action (α), regular (β) and state formulae (ϕ), expressed by the following
grammars:

α ::= T | F | ¬α |α1 ∧ α2 | α1 ∨ α2 | a β ::= α | β1 · β2 | β1|β2 | β∗
ϕ ::=T | F | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [β]ϕ | 〈β〉ϕ

We have chosen this logic because of the fact that it is also built over regular
formulae, which gives a cleaner relationship with the abstraction framework we
have presented. We first describe informally the meaning of the formulae and
then we will give the formal semantics: a stands for an action label, it matches
transitions with the same action label. T matches all actions, ¬α matches all
actions but the ones matched by α. F matches no action, it could have been
expressed by ¬T.

Regular formulae match sequences of actions; ’·’ stands for the concatenation
operator, ’|’ is the choice operator, ’∗’ is the transitive and reflexive closure
operator. Note that α is used to represent both a regular formula with only one
action and an action formula.

The semantics of the state formulae is standard. [β]ϕ holds in a state in which
all continuations by sequences matching β end in a state satisfying ϕ. 〈β〉ϕ holds
in a state in which there exists at least one β sequence to a state satisfying ϕ.

The formal semantics of action formulae �α�, is as follows:

�T� = Act
�F� = ∅

�a� = {a}
�¬α� = Act \ �α�

�α1 ∧ α2� = �α1� ∩ �α2�
�α1 ∨ α2� = �α1� ∪ �α2�

Now, we give the semantics for the regular formulae, �β�:

�α� = {[a] | a ∈ �α�}
�β∗� = �β�∗

�β1|β2� = �β1� ∪ �β2�
�β1 · β2� = {w1 · w2 | w1 ∈ �β1� ∧ w2 ∈ �β2� }
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The interpretation of a state formula on a LTS returns a set of states, following
the next rules:

�T� = S �F� = ∅ �¬ϕ� = S \ �ϕ�

�ϕ1 ∧ ϕ2� = �ϕ1� ∩ �ϕ2� �ϕ1 ∨ ϕ2� = �ϕ1� ∪ �ϕ2�

�[β]ϕ� = {s | ∀ r, a0, ..., ai. s
a0→ · · · ai→ r ∧ [a0 · · ·ai] ∈ �β� =⇒ r ∈ �ϕ�}

�〈β〉ϕ� = {s | ∃ r, a0, ..., ai. s
a0→ · · · ai→ r ∧ [a0 · · ·ai] ∈ �β� ∧ r ∈ �ϕ�}

We say that a state s satisfies a formula ϕ, denoted by s |= ϕ, if and only if
s ∈ �ϕ�. The notationM, s |= ϕ means that the state s satisfies the formula ϕ on
M. It is simple to see that we can use the classical dualities on state formulae:
T = ¬F, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2) and �[β]ϕ� = �¬〈β〉¬ϕ�.

We now define a three-valued semantics for Accelerated Modal -LTSs. This is
analogous to [6], where the semantics of a state formula consists of two sets of
states: A set of states that necessarily satisfy the formula and a set of states that
possibly satisfy it. Thus, the semantics of the formulae is given by �ϕ� ∈ 2S × 2S

and the projections �ϕ�nec and �ϕ�pos give the first and the second component,
respectively. First, we present the semantics for the necessary interpretation. We
start with the state formulae in which basically the modality is pushed inwards
in all the operators, and inverted for the negation:

�T�nec = S �F�nec = ∅ �¬ϕ�nec = S \ �ϕ�pos

�ϕ1 ∧ ϕ2�
nec = �ϕ1�

nec ∩ �ϕ2�
nec �ϕ1 ∨ ϕ2�

nec = �ϕ1�
nec ∪ �ϕ2�

nec

�[β]ϕ�nec = {s | ∀ r, a0, ..., ai. s
a0→� · · ·

ai→� r ∧ [a0 · · · ai] ∈ �β� =⇒ r ∈ �ϕ�nec}
�〈β〉ϕ�nec = {s | ∃ r, σ0, ..., σi. s

σ0→� · · ·
σi→� r ∧ �σ0 · · ·σi� ⊆ �β� ∧ r ∈ �ϕ�nec}

By the definition of negation if a system necessarily satisfies a negated property
then it does not possibly satisfy the property (in positive form), i.e., �¬ϕ�nec =
¬�ϕ�pos. The most interesting part of the semantics is the definition of the ex-
istential operator (〈β〉ϕ). A given state satisfies an existential property if there
exists a sequence of actions arriving at a suitable state r, such that the lan-
guage generated by the concatenation of the action labels is contained in the
language generated by the given β. The necessary semantics of the existential
operator looks at must -transitions because it reasons about required behaviours,
the executions that are guaranteed by the model. However the necessary seman-
tics of the universal operator ([β]ϕ) considers may executions. This is because
we have to check all possible continuations, which are represented by the may-
transitions. The possibly semantics is dual, we just present it for the box and
diamond operators (note the swap of the modalities):

�[β]ϕ�pos = {s | ∀ r , σ0, ..., σi. s
σ0→� · · ·

σi→� r ∧ �σ0 · · ·σi� ⊆ �β� =⇒r ∈ �ϕ�pos}
�〈β〉ϕ�pos = {s | ∃ r, a0, ..., ai. s

a0→� · · ·
ai→� r ∧ [a0 · · · ai] ∈ �β� ∧ r ∈ �ϕ�pos}

We say that a state s necessarily satisfies a formula ϕ, denoted by s |=nec ϕ,
if and only if s ∈ �ϕ�nec and dually s possibly satisfies a formula ϕ, denoted by
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s |=pos ϕ, if and only if s ∈ �ϕ�pos. It is absolutely not trivial to see whether we
can compute the semantics of a formula, the use of accelerations converts the
model checking problem into a non-standard problem. In section 5, we propose
an algorithm, showing that the PDL model checking problem on Accelerated
Modal -LTS is decidable.

We remark that the necessary interpretation is consistent, i.e., we cannot
prove at the same time that one formula and its negation are necessarily satisfied.
Furthermore, the possible semantics is complete, we can either prove a property
or its negation. We formally state these results.

Lemma 1. �ϕ�nec ⊆ �ϕ�pos

This lemma follows from the fact that, in Accelerated Modal -LTSs, every accel-
erated must -transition corresponds to a finite sequence of may-transitions (see
Definition 3).

Lemma 2. The necessary interpretation is consistent, i.e., �ϕ ∧ ¬ϕ�nec = ∅
Lemma 3. The possible interpretation is complete, i.e., �ϕ ∨ ¬ϕ�pos = S

These two properties follow trivially from the fact that �ϕ�nec ⊆ �ϕ�pos and
from the semantics of negation. Furthermore, the dualities between operators,
presented above, are also satisfied by the three-valued semantics. We now present
the preservation results; their proofs can be found in [19].

Theorem 1. Given two Accelerated Modal-LTSs, M and N , over the same
sets of states and labels S and Act, with M ! N for all s in S and for all
formula ϕ, we have:

N , s |=nec ϕ =⇒ M, s |=nec ϕ and N , s �|=pos ϕ =⇒ M, s �|=pos ϕ

The theorem states that necessary properties can be inferred from approxima-
tions to more precise models and the other way around for possible properties.
We can formalise a similar result for the relation between abstract systems and
concrete systems:

Theorem 2. Let M be the LTS, (S, Act,→, s0), h be mapping between S and
Ŝ and let the Accelerated Modal-LTS, M̂ (Ŝ, Act,→�,→�, Ŝ0) be the minimal
abstraction of (M̂ = minh(M)). Then for every ϕ, and for every s and ŝ such
that h(s) = ŝ, we have:

M̂, ŝ |=nec ϕ =⇒ M, s |= ϕ and M̂, ŝ �|=pos ϕ =⇒ M, s �|= ϕ

Theorem 1 defines the inference between abstractions with different precision,
and Theorem 2 between a concrete system and its minimal abstraction. Together
they can be used to infer properties from an abstract approximation to a concrete
system. If we have to prove a property ϕ on a concrete system M, it is enough
that an abstract approximation M̂ necessarily satisfies it. If we want to refute a
property, we prove that M̂ does not possibly satisfies it. If, however, M̂, ŝ �|=nec ϕ

and M̂, ŝ |=pos ϕ no conclusion on M̂ can be drawn. This is inevitable, because
abstraction may loose information.
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4.1 Example

Let us consider again the example of the resettable counter and the following
property, [ (¬“expire”)∗ ]〈T ∗ .“expire” 〉T, which is read as: after any sequence
of actions different from expire there is a path that contains the action expire.
We can see that this is trivially satisfied by the concrete system presented in
Figure 1. We can infer it from the abstract system of Figure 3. We recall that
the universal modality is interpreted over may actions and the existential over
must ones. Hence:

– From the initial state +, the states that may be reached by (¬ “expire”*)
are {+, 0}. Then,

– from + there is the path dec+→ �
expire→ � and �dec+ · expire� ⊂ �T ∗ · expire�,

therefore + satisfies 〈 T*. “expire” 〉 T.
– From 0 we have the transition

expire→ �, and �expire� ⊂ �T∗ · expire�, therefore
0 also satisfies the 〈 T*. “expire” 〉 T.

– Hence, the formula is necessarily satisfied in the abstraction and we can infer
the satisfaction on the concrete system.

We remark that the formula cannot be proved using only the abstraction
framework without accelerations (Figure 2) because there will not be a must -
transition between + and 0. The next section is dedicated to describing a model
checking algorithm that implements the semantics given above. It shows that
the three-valued PDL model checking problem for Accelerated Modal -LTSs is
still decidable.

5 Model Checking

Theorem 3. The three-valued PDL model checking problem for accelerated Mo-
dal-LTSs is decidable.

The rest of this section is devoted to the algorithm, and to an example of its
application. Let a fixed Accelerated Modal -LTS M and a PDL formula ϕ be
given. The model checking problem is solved by two functions eval nec and
eval pos that given a formula compute a set of states. They work by analysing
the subformula components of the original. They are derived from the semantics
presented in section 4. We only present eval nec which returns the set of states
that necessarily satisfy a formula. eval pos returns the set of states that possibly
satisfy a formula and it is defined dually.

function eval nec(ϕ) {
if ϕ = F then return ∅;
if ϕ = ¬ϕ1 then return S \ eval pos(ϕ1);
if ϕ = ϕ1 ∨ ϕ2 then return eval nec(ϕ1) ∪ eval nec(ϕ2);
if ϕ = 〈β〉ϕ1 then return exists must(β, eval nec(ϕ1));

}
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The rest of the cases (T, ∧ and []) follow from the standard dualities. The auxil-
iary function exists must(β, R) computes the part referring to the accelerations.
It returns the set of states that can reach a state in R by performing a sequence
of actions such that the language generated by the concatenation of the action
labels is included in the language generated by β. The function that computes
this is not trivial. We first give an algorithm to compute this function, and then
provide an explanation for it. In the algorithm we use the following notation:
Given an automaton B, B(i,J) denotes the automaton that is obtained from B
by changing the initial state to i and the final states to J .

function exists must(β, R) {
1 B := DFA(β); b0 := START(B); F := FINAL(B);

2 for all σ such that ∃ s, r ∈ S. s
σ→� r do Rσ := {(i, J) | �σ� ⊆ �B(i,J)�}

3 for all s, r ∈ S do R(s,r) := ∪{Rσ | s
σ→� r}

4 while R(s,t) is not yet stable for some s, t do {
R(s,t) := R(s,t) ∪ {(h, J) | ∃ r, I. (h, I) ∈ R(s,r) ∧ ∀i ∈ I.(i, J) ∈ R(r,t)}

5 return {s | ∃ r ∈ R ∃ (b0, J) ∈ R(s,r). J ⊆ F};
}
Let us see how the last algorithm works:

1. First, the algorithm computes a deterministic automaton (DFA) correspond-
ing to the regular expression β. B denotes this automaton, b0 its initial state
and F the set of final states.

2. Then, for every regular expression σ of the Modal transition system, we
compute Rσ which consists of a set of the pairs (i, J) in B, such that the
language generated by σ is included in the language accepted by the au-
tomaton B(i,J). Note that if (i, J) is in Rσ then all pairs (i, J ′) with J ⊂ J ′

are also in Rσ

3. In the third step, for every pair of states (s, r) of the transition system, we
take the union of the sets associated to the transitions from s to r. That is,
(i, J) ∈ R(s,r) implies that there exists a regular expression σ such that there
is a transition from s to r labelled with σ, i.e, s

σ→� r, and the language of
σ is included in the language accepted by B(i,J).

4. Then, for every pair of states, we compute the closure of the sets. The com-
putation is done until the fixpoint is reached. If (h, J) ∈ R(s,t) then there
exists a sequence of transitions from s to t, i.e., s

σ0→� ...
σn→� t such that

the language of the concatenation of σ0, ..., σn is included in the language
accepted by B(h,J).

5. Finally, the algorithm returns the states s that are related with a target state
r ∈ R, such that the relation R(s,r) contains a pair (b0, J) where b0 is the
initial state of B and J only contains final states of B. From J ⊆ F follows
that the language accepted by B(b0,J) is included in the language accepted by
B. And, by step 4, we see that there exists a sequence of regular expressions
σ0, ..., σn such that there is a sequence of transitions from s to r labelled with
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σ0, ..., σn, i.e., s
σ0→� ...

σn→� r and the language of the concatenation of the
σs is included in the language accepted by B(b0,J), so also in the language
accepted by B.

We can easily see that the function exists must terminates, because for every
pair (s, r) the relation R(s,r) will contain elements in B × P(B), which is fi-
nite because B is a finite automaton. Furthermore, the fixpoint computation is
monotonic which implies that the algorithm will finish.

The use of regular expressions adds more computational complexity to the
normal model checking algorithm. The algorithm is exponential in the size of
the automaton corresponding to β and the automata of the transitions, and
in the size of the transition systems. Even though the complexity is very high,
in practice the regular expressions that will appear will be rather simple, so
we expect that it will not cause a significant slow down of the normal model
checking algorithms.

To complete the model checking algorithm we have to provide also a definition
for eval pos, which is as similar to eval nec, swapping the modalities as we did
for the semantics in section 4.

5.1 Example

To end this section we include an example of the exists must computation. Let
us consider the transition system of the left part of Figure 4 (in which we only
include must transitions). We want to compute exists must(β, R) of it, with
β = a ·(b)∗·c and R = {t}. The first step is to transform β to a deterministic
automaton (right part of Figure 4). From the DFA we can remove those edges
that lead to states from which no accepting states can be reached anymore. This
simplifies the example, without changing the final result.

– Rσ0 = Rσ3 = Rσ4 = {(h, {i}), (h, {i, j}), (h, {i, h}), (h, {i, j, h})}
– Rσ1 = {(i, {j}), (i, {j, i}), (i, {j, h}), (i, {j, i, h})}, Rσ2 = ∅ and
– Rσ5 = {(i, {i}), (i, {i, j}), (i, {i, h}), (i, {i, j, h})}.

Now, in step 3 we compute the relations between states of the transition system:

– R(r,s) = Rσ0 , R(s,t) = Rσ1 , R(u,u) = Rσ3 ∪Rσ4 and R(u,t) = Rσ5

– The sets for the rest of the pairs of states are empty.

We close the relations under concatenation, which adds:

– R(r,t) = {(h, {j}), (h, {j, i}), (h, {j, h}), (h, {j, i, h})}
– R(u,t) = Rσ5 ∪ {(h, {i}), (h, {j, i}), (h, {j, h}), (h, {j, i, h})}

Finally, we see that R(r,t) contains the pair (h, {j}) which is the initial state of
β and {j} ⊆ F . Therefore, there is a path from r to t for which the language of
the concatenation of its labels is included in β. Hence, the result of the function
will be {r}.
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σ3 = ab
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b

a

Fig. 4. Accelerated Modal -LTS (only must-part) and the DFA corresponding to β

6 Related Work

The problem of how to improve the expressiveness of abstractions has already
been addressed by other authors. An interesting approach is, for example, the
one proposed by Pnueli, in [10, 5]. His idea is to impose fairness constraints
on the abstract system in order to remove undesirable behaviours. The fairness
constraints are extracted from the knowledge we have of the concrete system.
For example in the resettable counter example, we may know that the concrete
system does not contain any infinite decreasing trace, hence the abstract one
should not have it either. So, we can infer the following constraint: “For any
fair trace, if the transition + dec→ 0 is infinitely often enabled then it should be
infinitely often taken.”

Any fair computation of the abstract system will not contain an infinite loop
+ dec→ +. This approach is valid to remove non-progressing traces (possible be-
haviours, represented by may traces in our framework). It has been used to infer
properties coded in LTL by Pnueli and also recently by Bosnacki et al. [1]. In
the latter approach the authors proved that in some specific cases, such as the
counter abstraction, strong fairness constraints can be reduced to weak fairness
which are more efficiently handled by model checkers. In our approach, we add
necessary behaviours, so those approaches are independent of ours. Actually,
both methods can be combined orthogonally, to even further make abstractions
more precise.

The only other approach we have found to add more must -behaviour is based
on adding hyper-transitions [17, 12]. It applies, for example, in cases of if-then-
else constructions. If the condition is abstracted, we don’t know the next state.
So there will be two may-transitions, one s

a→� r and one s
b→� t, but no must -

transition. The idea of hyper-edges is to add a must -hyper-transition, starting
from s, and pointing to both r and t. This indicates that there must be a transi-
tion, but we are not sure where it precisely ends. We can capture a similar effect

by adding a step s
a|b→� u, where u is a state more abstract than r and t. Finally,

we can even express much more complicated structures, such as nested loops,

like in s
(b·a∗·c)+→ � r.
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7 Future Work

We have described how to capture semantically a transition that represents a
set of computations. A different problem is, given a specification of the system,
how to add sound accelerated -transitions. We give here some ideas about this.

In some cases a transition of the type s
a∗→� r corresponds to a loop in the

original specification. The transition expresses that the loop executes a number
of actions a and then terminates. We do not know how many cycles it contains,
but it ends at some point. Therefore to add such a transition to the abstract la-
belled transition system, we will have to prove termination of the concrete loop.
Proving termination of sequential programs has been investigated for many years,
we believe that many of the results of this field can be applied to our framework.

One of the common ways to prove termination is by checking that the com-
putation progresses in a given well-founded domain. For example, in order to
infer fairness constrains, Pnueli [10] uses a monitor process composed in parallel
with the modelled system. The monitor controls the progress in the domain of
the naturals. In some cases it is trivial to find the domain, for example for the
decreasing counter, but this is not always the case.

In [19], we showed how our approach can be used to prove successful termi-
nation of a parametric Bounded Retransmission Protocol, see also [7, 4]. More
experiments on realistic size case studies are needed to see which regular expres-
sions typically arise in practice, and how our algorithm behaves on them. This
will also provide feedback on how to optimize the algorithm. Furthermore, an
interesting question is to determine the precise complexity of the three-valued
PDL model checking problem on accelerated Modal -LTSs.

8 Conclusion

In this paper we introduced accelerated modal transitions. These capture se-
quences of required behaviour. They turned out to be useful in cases where
usual modal LTSs are too imprecise, due to missing must-transitions. Besides
defining accelerated Modal -LTSs, and suitable abstraction and approximation
relations, we also showed that these relations preserve properties of three-valued
PDL in the desired direction. As a consequence, after applying abstract inter-
pretation, we are able to prove more liveness properties. Finally, we showed that
the three-valued model checking problem for PDL on accelerated Modal -LTSs is
decidable.
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Abstract. This paper revolves around the so-called plan revision rules
of the agent programming language 3APL. These rules can be viewed
as a generalization of procedures. This generalization however results
in the semantics of programs of the 3APL language no longer being
compositional. This gives rise to problems when trying to define a proof
system for the language. In this paper we define a restricted version of
plan revision rules which extends procedures, but which does have a
compositional semantics, as we will formally show.

1 Introduction

An agent is commonly seen as an encapsulated computer system that is situated
in some environment and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives [1]. Autonomy means that
an agent encapsulates its state and makes decisions about what to do based on
this state, without the direct intervention of humans or others. Agents are situ-
ated in some environment which can change during the execution of the agent.
This requires flexible problem solving behavior, i.e., the agent should be able to
respond adequately to changes in its environment. Programming flexible com-
puting entities is not a trivial task. Consider for example a standard procedural
language. The assumption in these languages is that the environment does not
change while some procedure is executing. If problems do occur during the exe-
cution of a procedure, the program might throw an exception and terminate (see
also [2]). This works well for many applications, but we need something more if
change is the norm and not the exception.

A philosophical view that is well recognized in the AI literature is that ra-
tional behavior can be explained in terms of the concepts of beliefs, goals and
plans. [3, 4, 5]. This view has been taken up within the AI community in the
sense that it might be possible to program flexible, autonomous agents using
these concepts. The idea is that an agent tries to fulfill its goals by selecting
appropriate plans, depending on its beliefs about the world. Beliefs should thus
represent the world or environment of the agent; the goals represent the state of
the world the agent wants to realize and plans are the means to achieve these
goals. When programming in terms of these concepts, beliefs can be compared
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to the program state, plans can be compared to statements, i.e., plans constitute
the procedural part of the agent, and goals can be viewed as the (desired) post-
conditions of executing the statement or plan. Through executing a plan, the
world and therefore the beliefs reflecting the world will change and this execution
should have the desired result, i.e., achievement of goals.

This view has been adopted by the designers of the agent programming lan-
guage 3APL1 [6, 7], which is a well-known language in the agent programming
community. The dynamic parts of a 3APL agent thus consist of a set of beliefs,
a plan2 and a set of goals. A plan can consist of sequences of so-called basic
actions, which change the beliefs3 if executed. To provide for the possibility of
programming flexible behavior, so-called plan revision rules were added to the
language. These rules can be compared to procedures in the sense that they have
a head, which is comparable with the procedure name, and a body, which is a
plan in the case of 3APL and a statement in the case of procedural languages.

The operational meaning of plan revision rules is similar to that of procedures:
if the procedure name or head is encountered in a statement or plan, this name
or head is replaced by the body of the procedure or rule, respectively (see [8]
for the operational semantics of procedure calls). The difference however is that
the head in a plan revision rule can be any plan (or statement) and not just
a procedure name. In procedural languages it is furthermore usually assumed
that procedure names are distinct. In 3APL however, it is possible that multiple
rules are applicable at the same time. This provides for very general and flexible
plan revision capabilities, which is a distinguishing feature of 3APL compared
to other agent programming languages [9, 10, 11].

As argued, we consider these general plan revision capabilities to be an essen-
tial part of agenthood. The introduction of these capabilities now gives rise to
interesting issues concerning the semantics of plan execution, which we will be
concerned with in this paper.

The main issue which arises with the introduction of plan revision rules, is
the issue of compositionality of semantics of plans. For standard procedural lan-
guages [8, Chapter 5], the semantics of statements is compositional, i.e., the
semantics of a composed statement can be defined in terms of the semantics of
the parts of which it is composed. The semantics of plans however, which can be
viewed as the statements of 3APL, is not compositional. The reason for this lies
in the presence of plan revision rules, which we will elaborate on in section 3.2.

The fact that the semantics of plans is not compositional, gives rise to prob-
lems when trying to reason about 3APL programs. A proof system for a pro-
gramming language will typically contain rules by means of which properties of
the entire program can be proven by proving properties of the parts of which the
program is composed. Since the semantics of 3APL plans is not compositional,
this is problematic in the case of 3APL. One way of trying to approach this

1 3APL is to be pronounced as “triple-a-p-l”.
2 In the original version this was a set of plans.
3 A change in the environment is a possible “side effect” of the execution of a basic

action.
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problem is by defining a specialized logic for 3APL which tries to circumvent
the issue, as was done in [12, 13]. The resulting logic is however non-standard
and can be difficult to use, which will be explained in more detail in section 3.3.

The approach we take in this paper, is to try to restrict the allowed plan
revision rules, such that the semantics of plans becomes compositional in some
sense. It is not immediately obvious what kind of restriction would yield the
desired result. In this paper, we propose such a restriction and prove that the
semantics of plans in that case is compositional.

The outline of the paper is as follows. In section 2, we present the syntax and
semantics of a simplified version of 3APL. It is important to note that we use a
simplified version, in order to be able to focus on the issue of compositionality
of plans. In particular, we do not include a model of the environment in the se-
mantics, since this is not necessary for investigating the compositionality issue.
In section 3 we elaborate on the issue of compositionality and explain why the
semantics of full 3APL is not compositional. In section 4 we present our proposal
for a restricted version of plan revision rules, and prove that the semantics of
plans is compositional, given this restriction on plan revision rules. This paper
aims to be a first step towards a compositional proof system for 3APL. Inves-
tigating automated theorem proving and providing accompanying tool support
for this is left for future research.

2 3APL

2.1 Syntax

Below, we define belief bases and plans. A belief base is a set of propositional
formulas. A plan is a sequence of basic actions. Basic actions can be executed,
resulting in a change to the beliefs of the agent.

In the sequel, a language defined by inclusion shall be the smallest language
containing the specified elements.

Definition 1 (belief bases) . Assume a propositional language L with typical
formula p and the connectives ∧ and ¬ with the usual meaning. Then the set of
belief bases Σ with typical element σ is defined to be ℘(L).4

Definition 2 (plans). Assume that a set BasicAction with typical element a is
given. The set of plans Plan with typical element π is then defined as follows.

π ::= a | π1; π2

We use ε to denote the empty plan and identify ε; π and π; ε with π.

Plan revision rules consist of a head πh and a body πb. Informally, an agent that
has a plan πh, can replace this plan by πb when applying a plan revision rule of
this form.
4 ℘(L) denotes the powerset of L.
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Definition 3 (plan revision rules). The set of plan revision rules R is defined
as follows: R = {πh � πb | πh, πb ∈ Plan, πh �= ε}.5

Take for example a plan a; b where a and b are basic actions, and a plan revision
rule a; b � c. The agent can then either execute the actions a and b one after
the other, or it can apply the plan revision rule yielding a new plan c, which can
in turn be executed.

Below, we provide the definition of a 3APL agent. The function T , taking a
basic action and a belief base and yielding a new belief base, is used to define
how belief bases are updated when a basic action is executed.

Definition 4 (3APL agent). A 3APL agent A is a tuple 〈σ0, π0, PR, T 〉 where
σ0 ∈ Σ, π0 ∈ Plan, PR ⊆ R is a finite set of plan revision rules and T :
(BasicAction × Σ) → Σ is a partial function, expressing how belief bases are
updated through basic action execution.

A plan and a belief base can together constitute a so-called configuration. Dur-
ing computation or execution of the agent, the elements in a configuration can
change.

Definition 5 (configuration). Let Σ be the set of belief bases and let Plan be
the set of plans. Then Plan×Σ is the set of configurations of a 3APL agent. If
〈σ0, π0, PR, T 〉 is an agent, then 〈π0, σ0〉 is the initial configuration of the agent.

2.2 Semantics

The semantics of a programming language can be defined as a function taking a
statement and a state, and yielding the set of states resulting from executing the
initial statement in the initial state. In this way, a statement can be viewed as
a transformation function on states. In 3APL, plans can be seen as statements
and belief bases as states on which these plans operate. There are various ways
of defining a semantic function and in this paper we are concerned with the
so-called operational semantics (see for example De Bakker [8] for details on this
subject).

The operational semantics of a language is usually defined using transition
systems [14]. A transition system for a programming language consists of a set
of axioms and derivation rules for deriving transitions for this language. A tran-
sition is a transformation of one configuration into another and it corresponds
to a single computation step. Let A be a 3APL agent with a set of plan revision
rules PR, belief update function T , and let BasicAction be its set of basic actions.
Below, we give the transition system TransA for our simplified 3APL language,

5 In [6], plan revision rules were defined to have a guard, i.e., rules were of the form
πh | φ � πb, where φ is a condition on the belief base. For a rule to be applicable,
the guard should then hold. For technical convenience and because we want to focus
on the plan revision aspect of these rules, we however leave out the guard in this
paper.
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which is based on the system given in [6]. This transition system is specific to
agent A.

There are two kinds of transitions, i.e., transitions describing the execution
of basic actions and those describing the application of a plan revision rule. The
transitions are labelled to denote the kind of transition. A basic action at the
head of a plan can be executed in a configuration if the function T is defined for
this action and the belief base in the configuration. The execution results in a
change of belief base as specified through T and the action is removed from the
plan.

Definition 6 (action execution). Let a ∈ BasicAction.

T (a, σ) = σ′

〈a; π, σ〉 →exec 〈π, σ′〉

A plan revision rule can be applied in a configuration if the head of the rule is
equal to a prefix of the plan in the configuration. The application of the rule
results in the revision of the plan, such that the prefix equal to the head of the
rule is replaced by the plan in the body of the rule. A rule a; b � c can for
example be applied to the plan a; b; c, yielding the plan c; c. The belief base is
not changed through plan revision.

Definition 7 (rule application). Let ρ : πh � πb ∈ PR.

〈πh • π, σ〉 →apply 〈πb • π, σ〉

Using the transition system, individual transitions can be derived for a 3APL
agent. These transitions can be put in sequel, yielding transition sequences,
which are typically denoted by θ. From a transition sequence, one can obtain
a computation sequence by removing the plan component of all configurations
occurring in the transition sequence. In the following definitions, we formally de-
fine computation sequences and we specify the function yielding these sequences,
given an initial configuration.

Definition 8 (computation sequences). The set Σ+ of finite computation se-
quences is defined as {σ1, . . . , σi, . . . , σn | σi ∈ Σ, 1 ≤ i ≤ n, n ∈ N}.

Definition 9 (function for calculating computation sequences). Let
xi ∈ {exec, apply} for 1 ≤ i ≤ m. The function CA : (Plan × Σ) → ℘(Σ+)
is then as defined below.

CA(π, σ) = {σ, . . . , σm ∈ Σ+ | 〈π, σ〉 →x1 . . .→xm 〈ε, σm〉
is a finite sequence of transitions in TransA}.

Note that we only take into account successfully terminating transition se-
quences, i.e., those sequences ending in a configuration with an empty plan.
Using the function defined above, we can now define the operational semantics
of 3APL.
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Definition 10 (operational semantics). Let κ : Σ+ → Σ be a function yielding
the last element of a finite computation sequence, extended to handle sets of
computation sequences as follows, where I is some set of indices: κ({δi | i ∈ I}) =
{κ(δi) | i ∈ I}. The operational semantic function OA : Plan → (Σ → ℘(Σ)) is
defined as follows:

OA(π)(σ) = κ(CA(π, σ)).

We will in the sequel omit the superscript A to functions as defined above, for
reasons of presentation.

3 3APL and Non-compositionality

Before we go into discussing why the semantics of 3APL plans is not composi-
tional, we consider compositionality of standard procedural languages.

3.1 Compositionality of Procedural Languages

The semantics of standard procedural languages such as described in
[8, Chapter 5] are compositional. Informally, a semantics for a programming
language is compositional if the semantics of a composed program can be de-
fined in terms of the semantics of the parts of which it is composed. To be more
specific, the meaning of a composed program S1; S2 should be definable in terms
of the meaning of S1 and S2, for the semantics to be compositional.

A semantics can be defined directly in a compositional way, in which case
the semantics is often termed a denotational semantics [8]. Alternatively, a se-
mantics can be defined in a non-compositional way, such as an operational
semantics defined using computation sequences, while it still satisfies a com-
positionality property. In this paper, we focus on the latter case. It turns out
that the operational semantics for a procedural language such as discussed in
[8, Chapter 5] satisfies such a compositionality property, while the operational
semantics of 3APL of definition 10 does not. All results and definitions with
respect to procedural languages which we refer to in section 3, can be found in
[8, Chapter 5].

An operational semantics of a procedural language can be defined analogously
to the operational semantics of 3APL of definition 10, where plans are state-
ments and belief bases are states. Both operational semantics are defined in
a non-compositional way, since they do not use the structure of the plan or
statement to define its semantics. Nevertheless, the operational semantics of a
procedural language does satisfy a compositionality property, i.e., the follow-
ing holds: O(S1; S2)(σ) = O(S2)(O(S1)(σ)), where S1 and S2 are statements.
This property specifies that the set of states possibly resulting from the execu-
tion of a composed statement S1; S2 in σ is equal to the set of states result-
ing from the execution of S2 in all states resulting from the execution of S1
in σ.
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3.2 Non-compositionality of 3APL

While the presented compositionality property is termed “natural” in
[8, Chapter 5], it is not satisfied by the operational semantics of 3APL, i.e.,
it is not the case that O(π1; π2)(σ) = O(π2)(O(π1)(σ)) always holds. The reason
for this lies in the presence of plan revision rules. Take for example an agent
with one plan revision rule a; b � c. Let σab and σc be the belief bases resulting
from the execution of actions a followed by b, and c in σ, respectively. We then
have that O(a; b)(σ) = {σab, σc}, i.e., the agent can either execute the actions
a and b one after the other, or it can apply the plan revision rule and then
execute c.

If the semantics of 3APL plans would have been compositional, we would
also have that O(b)(O(a)(σ)) = {σab, σc}. This is however not the case, since
O(b)(O(a)(σ)) = {σab}.6 This stems from the fact that if one “breaks” the
composed plan a; b in two, one can no longer apply the plan revision rule a; b � c,
because this rule can only be applied if the composed plan a; b is considered. The
set of belief bases O(a)(σ) only contains those resulting from the execution of
a. The action b is then executed on those belief bases, yielding O(b)(O(a)(σ)).
The result thus does not contain σc.

3.3 Reasoning About 3APL

This non-compositionality property of 3APL plans gives rise to problems when
trying to define a proof system for reasoning about 3APL plans. In standard
procedural languages, the following proof rule is part of any Hoare logic for such
a language [8], where p, p′ and q are assertions.

{p} S1 {p′} {p′} S2 {q}
{p} S1; S2 {q}

(3.1)

This rule specifies that one can reason about a composed program by proving
properties of the parts of which it is composed. The soundness of this rule de-
pends on the fact that O(S1; S2)(σ) = O(S2)(O(S1)(σ)). Because this property
does not hold for 3APL plans, a similar rule for 3APL would not be sound (see
also the discussion in [13]). Nevertheless, one would still want to reason about
composed 3APL plans.

In [13],7 we have presented a specialized dynamic logic for this purpose. In
that paper, we define a logic for reasoning about 3APL plans in which we can
restrict the number of plan revision rule applications allowed to occur during the
execution of the plan. Based on this logic, we define a logic for reasoning about
3APL plans in general. The resulting complete proof system however contains
an infinitary proof rule, i.e., a rule with an infinite number of premises. In some
cases, induction can be used to prove the premises of this rule. These induction

6 Note that O(b)(O(a)(σ)) ⊆ O(a; b)(σ).
7 Parts of [13] were published in [12].
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proofs are however quite involved, and it is not yet clear whether these can
somehow be automated, etc.

Another possible approach for reasoning about 3APL plans has been suggested
in [15, 16]. In that paper, we define a denotational (i.e., compositional) semantics
for a 3APL meta-language. This meta-language is relatively standard, as it is
essentially a non-deterministic language with a while construct. It was suggested
that it might by possible to reason about this meta-language, rather than about
3APL plans directly.

While the two discussed papers aim at reasoning about full 3APL, we take a
different approach in this paper. Here, we investigate whether we can somehow
restrict plan revision rules, such that the semantics of plans becomes composi-
tional (in some sense). The idea is that given such a compositional semantics, it
will be possible to come up with a more standard and easy to use proof system
for 3APL.

4 Compositional 3APL

One obvious candidate for a restricted version of plan revision rules is the restric-
tion to rules with an atomic head, i.e., to rules of the form a � π. These rules
are very similar to procedures, apart from the fact that an action a could either
be transformed using a plan revision rule, or executed directly. In contrast with
actions, procedure variables cannot be executed, i.e., they can only be replaced
by the body of a procedure. It is easy to see that a semantics for 3APL with
only these plan revision rules would be compositional.

However, this kind of plan revision rules would capture very little of the
general plan revision capabilities of the non-restricted rules. The challenge is
thus to find a less restrictive kind of plan revision rules, which would still satisfy
the desired compositionality property. Finding such a restricted kind of plan
revision rules is non-trivial. We discuss the line of reasoning by which it can be
obtained in section 4.1. In section 4.2, we present and explain the theorem that
expresses that the proposed restriction on plan revision rules indeed establishes
(some form of) compositionality. Finally, in section 5, we briefly address the
issue of reasoning about 3APL with restricted plan revision rules, and point to
directions for future research regarding this issue.

4.1 Restricted Plan Revision Rules

The restriction to plan revision rules that we propose is given in definition 11
below, and can be understood by trying to get to the essence of the composi-
tionality problem arising from non-restricted plan revision rules.

First, we have to observe that the general kind of compositionality as spec-
ified in section 3.1 for procedural languages is in general not obtainable for
3APL, if the set of plan revision rules contains a rule with a non-atomic head.
The property specifies that the semantics of a composed plan (or program)
should be definable in terms of the parts of which it is composed. The prop-
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erty however does not specify how a composed plan should be broken down
into parts. That is, for a plan to be compositional in the general sense, com-
positionality should hold, no matter how the plan is decomposed. Consider
for example the plan a; b; c. It should then be the case that O(a; b; c)(σ) =
O(c)(O(a; b)(σ)) = O(b; c)(O(a)(σ)), i.e., the compositionality property should
hold, no matter whether the plan is decomposed into a; b and c, or a
and b; c.

If a set of plan revision rules however contains a rule with a non-atomic head,
it is always possible to come up with a plan (and belief base and belief update
function) for which this property does not hold. This plan should contain the
head of the plan revision rule. If the decomposition of the plan is then chosen
such that it “breaks” this occurrence of the head of the rule in the plan, the
compositionality property in general does not hold for this decomposition. This
is because the plan revision rule can in that case not be applied when calculating
the result of the operational semantic function. Consider for example the plan
revision rule a; b � c and the plan a; b; c. If the plan is decomposed into a and
b; c, the rule cannot be applied and thus O(a; b; c)(σ) = O(b; c)(O(a)(σ)) does
not always hold.

The question is now which kind of compositionality can be obtained for 3APL.
We have established that being allowed to decompose a composed plan into
arbitrary parts for a definition of compositionality gives rise to problems in the
case of 3APL. That is, the standard definition of compositionality will always
be problematic if we want to consider plan revision rules with a non-atomic
head. Since we want our restriction on plan revision rules to allow at least some
form of non-atomicity (because otherwise we would essentially be considering
procedures), we have to come up with another definition of compositionality if
we want to make any progress.

The idea that we propose is essentially to take the operational meaning of
a plan as the basis for a compositionality property. When executing a plan π,
either the first action of π is executed, or an applicable plan revision rule is
applied. In the first case, π has to be of the form a; πr

8, and in the latter case
of the form πh; π′

r, given an applicable plan revision rule of the form πh � πb.
Taking this into account, we are, broadly speaking, looking for a restriction to
plan revision rules which allows us to decompose π into a and πr, or πh and
π′

r. To be more specific, it should be possible to execute a and then consider
πr separately, or to apply the specified plan revision rule and then consider the
body of the rule πb and the rest of the plan, i.e., π′

r, separately. That is, we are
after something like the following compositionality property:9

O(π)(σ) = O(πr)(O(a)(σ)) ∪O(π′
r)(O(πb)(σ)). (4.1)

In order to come up with a restriction on plan revision rules that gives us such
a property, we have to understand why this property does not always hold in
8 The subscript r here indicates that πr is the rest of the plan π.
9 The property that will be proven in section 4.2 differs slightly, as it takes into account

the existence of multiple applicable plan revision rules.
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the presence of non-restricted plan revision rules. Essentially, what this property
specifies is that we can separate the semantics of certain prefixes of the plan π
(i.e., a and πh), from the semantics of the rest of π.

A case in which this is not possible, is the following. Consider a plan of the
form πh; π′

h; π, and plan revision rules of the form πh � πb and πb; π′
h � π′

b. We
can apply the first rule to this plan, yielding πb; π′

h; π. If the semantics of the
plan would be compositional in the sense of (4.1), it should now be possible to
consider the semantics of π′

h; π, i.e., the “rest” of the plan, separately. Given the
second plan revision rule however, this is not possible: if we separate πb; π′

h; π into
πb and π′

h; π, we can no longer apply the second plan revision rule, whereas we
can apply the rule if the plan is considered in its composed form. The semantics
of the plan πh; π′

h; π is thus not compositional, given the two plan revision rules.
This argument is similar to the explanation of why the general notion of

compositionality does not hold for 3APL. Contrary to the general case however,
we can in the case of compositionality as defined in (4.1), specify a restriction
to plan revision rules that prevents this problem from occurring. The restriction
will thus allow us to consider the semantics of π′

r (see (4.1)) separately from the
semantics of πb, thereby establishing compositionality property (4.1).

As explained, if there is a plan revision rule of the form πh � πb, a plan
revision rule with a head of the form πb; π′

h is problematic. A restriction one
could thus consider, is the restriction that if there is a rule of the form πh � πb,
there should not also be a rule of the form πb; π′

h � π′
b, i.e., the body of a

rule cannot be equal to the prefix of the head of another rule. This restriction
however does not do the trick completely. The reason has to do with the fact
that actions from a plan of the form πb; π′

h can be executed.
Consider for example a plan a1; a2; b1; b2 and plan revision rules

a1; a2 � c1; c2 and c2; b1 � c3. The head of the second rule does not have
the form c1; c2; π, i.e., the body of the first rule is not equal to the prefix of
the head of another rule. Therefore, according to the suggested restriction, this
rule is allowed. We can apply the first rule to the plan, yielding c1; c2; b1; b2.
If the compositionality property holds, we should now be able to consider the
semantics of b1; b2 separately. Suppose the action c1 is executed, resulting in the
plan c2; b1; b2. Considering the second plan revision rule, we observe that this
rule is applicable to this plan. This is however only the case if we consider this
plan in its composed form. If we separate the semantics of b1; b2 as specified by
the compositionality property (4.1), we cannot apply the rule. Given the plan
a1; a2; b1; b2 and the two plan revision rules, the compositionality property thus
does not hold.

The solution to this problem is to adapt the suggested restriction which con-
siders the body of a rule in relation with the prefix of the head of another rule,
to a restriction which consider the suffix of the body of a rule in relation with
the prefix of the head of another rule. The restriction should thus specify that
the suffix of the body of a rule cannot be equal to the prefix of the head of
another rule. Under that restriction, the second rule of the example discussed
above would not be allowed, and the compositionality property (4.1) would hold.
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This restriction on plan revision rules is specified formally below. The fact that
under this restriction, the property (4.1) (or a slight variation thereof) holds, is
formally shown in section 4.2.

Definition 11 (restricted plan revision rules). Let PR be a set of plan revision
rules. Let suff be a function taking a plan and yielding all its suffixes, and let
pref be a function taking a plan and yielding all its strict prefixes.10 We say that
PR is restricted iff the following holds:

∀ρ∈PR : (ρ : πh � πb) : ¬∃ρ′∈PR : (ρ′ : π′
h � π′

b) :
(
suff(πb)∩pref(π′

h)
)
�= ∅.

The fact that we define pref as yielding strict prefixes allows the suffix of the
body of a plan revision rule to be exactly equal to the head of another rule. This
does not violate the compositionality property, and it results in restricted plan
revision rules being a superset of rules with an atomic head. Otherwise, a rule
b � c, for example, would not be allowed if there is also a rule a � a; b, since b,
i.e., the suffix of the latter rule, would then by definition be equal to the prefix
of the head of the first rule.

4.2 Compositionality Theorem

The theorem expressing the compositionality property that holds for plans under
a restricted set of plan revision rules, is given below. It is similar to property
(4.1) specified in section 4.1, except that we take into account the existence of
multiple applicable plan revision rules. A plan π can thus be decomposed into a
and πr (where π is of the form a; π), or into πρ

h and πρ
r (where π is of the form

πρ
h; πρ

r ) for any applicable plan revision rule ρ of the form πρ
h � πρ

b .

Theorem 1 (compositionality of semantics of plans). Let A be an agent with
a restricted set of plan revision rules PR. Let ρ range over the set of rules from
PR that are applicable to the plan π, and let π be of the form πρ

h; πρ
r for an

applicable rule ρ of the form πρ
h � πρ

b . Further, let a be the first action of π, i.e.,
let π be of the form a; πr. We then have for all π �= ε and σ:

O(π)(σ) = O(πr)(O(a)(σ)) ∪
⋃
ρ

O(πρ
r )(O(πρ

b )(σ)).

In order to prove this theorem, we use lemma 1 below. This lemma, broadly
speaking, specifies that for a plan of the form πh; π, the following is the case:
after application of a plan revision rule of the form πh � πb, yielding the plan
πb; π, it will always be the case that πb is executed entirely, before π is executed.
Because of this, the semantics of πb and of π can be considered separately, which
is the core of our compositionality theorem.

10 The plan a is for example a strict prefix of a; b, but the plan a; b is not.
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Lemma 1. Let A be an agent with a restricted set of plan revision rules PR, and
let πh � πb ∈ PR. We then have that any transition sequence
〈πb; π, σ〉 → . . .→ 〈ε, σ′〉 has the form11

〈πb; π, σ〉 → . . .→ 〈π, σ′′〉 → . . .→ 〈ε, σ′〉

such that each configuration in the first part of the sequence, i.e., in
〈πb; π, σ〉 → . . . → 〈π, σ′′〉 = θ, has the form 〈πi; π, σi〉. That is, π is always
the suffix of the plan of the agent in each configuration of θ.

In the proof of this lemma, we use the notion of a plan π′ being suffix in π with
respect to some set of plan revision rules. A plan π′ is suffix in π, if π is the suffix
of π′, i.e., if π′ is of the form πpre; π. Further, πpre should be a concatenation of
suffixes of the bodies of the relevant set of plan revision rules.

Definition 12 (suffix in π). Let PR be a set of plan revision rules. Let sufi with
1 ≤ i ≤ n denote plans that are equal to the suffix of the body of a rule in PR,
i.e., for each sufi there is a rule in PR of the form πh � πr; sufi. We say that a
plan π′ is suffix in π with respect to PR, iff π′ is of the form suf1; . . . ; sufn; π,
and the length of suf1; . . . ; sufn is greater than 0.

The idea is that, given a plan of the form πb; π which is suffix in π by definition12,
this property is preserved until the plan is of the form π. If this is the case, we
have that π is always the (strict) suffix of the plan of each configuration, until
the plan equals π. We thus use the preservation of this property to prove lemma
1 (see below).

We need the fact that the part of the plan occurring before π is a sequence
of suffixes, in order to prove that π is preserved as the suffix of the plan.13 The
reason is, that if this is the case, we know by the fact that our plan revision
rules are restricted, that there cannot occur a rule application which transforms
π, thereby violating our requirement that π remains the suffix of the plan of the
agent, until the plan becomes equal to π. If a plan is of the form suf1; . . . ; sufn; π,
where each sufi denotes a plan that is equal to the suffix of the body of a plan
revision rule, we know that any plan revision rule will only modify a prefix
of suf1, because the plan revision rules are restricted. There cannot be a rule
with a head of the form suf1; πh, because this would violate the requirement of
restricted plan revision rules.

Proof of lemma 1. Let A be an agent with a restricted set of plan revision rules
PR. Let 〈π1, σ〉 → 〈π2, σ

′〉 be a transition of A. First, we show that if π1 is suffix
in π (with respect to PR), it has to be the case that π2 is suffix in π, or that
π2 = π.

11 In this lemma we omit the labels of transitions, for reasons of presentation.
12 That is, if πb is the body of a plan revision rule.
13 Note that we use the term suffix to refer to suffixes of the plans of the bodies of plan

revision rules, and to refer to the suffix of the plan in a configuration.
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Assume that π1 is suffix in π, i.e., let π1 = suf1; . . . ; sufn; π. If π = ε, the
result is immediate. Otherwise, the proof is as follows. A transition from 〈π1, σ〉
results either from the execution of an action, or from the application of an
applicable rule.

Let suf1 = a; suf ′
1. If action a is executed, π2 is of the form suf ′

1; . . . ; sufn; π.
If suf ′

1, . . . , sufn are ε, we have that π2 = π. Otherwise, we have that π2 is suffix
in π.

Let ρ : πh � πb be a rule from PR that is applicable to π1. Then it must
be the case that π1 is of the form πh; πr. By the fact that PR is restricted, we
have that there is not a rule ρ′ of the form suf1; π′ � π′

b, i.e., such that suf1,
which is the suffix of the body of a rule, is the prefix of the head of ρ′. Given
that ρ is applicable to π1, it must thus be the case that πh is a prefix of suf1,
i.e., that suf1 is of the form πh; π′′. Applying ρ to π1 thus yields a plan of the
form πb; π′′; suf2; . . . ; sufn; π. Since both πb and π′′ are suffixes of the bodies of
rules in PR, we have that π2 is suffix in π.

We have to show that any transition sequence θ of the form
〈πb; π, σ〉 → . . .→ 〈ε, σ′〉 has a prefix θ′ such that π is always a suffix of the plan
in each configuration of θ′. Let π2 be the plan of the second configuration of θ.
We have that πb; π is suffix in π. Therefore, it must be the case that π2 is also
suffix in π, or that π2 = π. In the latter case, we have the desired result. In the
former case, we have that π is a suffix of π2, in which case the first two configu-
ration may form a prefix of θ′. Let π3 be the plan of the third configuration of
θ. If π2 is suffix in π, it has to be the case that π3 is suffix in π, or that π3 = π.
In the latter case, we are done. In the former case, the first three configurations
may form a prefix of θ′. This line of reasoning can be continued. Since θ is a
finite sequence, it has to be the case that at some point a configuration of the
form 〈π, σ′′〉 is reached. This yields the desired result. �

Proof of theorem 1. We have to show the following:

σ′ ∈ O(π)(σ) ⇔ σ′ ∈ O(πr)(O(a)(σ)) ∪
⋃
ρ

O(πρ
r )(O(πρ

b )(σ)).

(⇐) Follows in a straightforward way from the definitions.
(⇒) Let n be the number of plan revision rules applicable to π, where πρi

h and
πρi

b respectively denote the head and body of rule ρi. We then have to show:

σ′ ∈ O(π)(σ) ⇒ σ′ ∈ O(πρ1
r )(O(πρ1

b )(σ)) or
...

σ′ ∈ O(πρn
r )(O(πρn

b )(σ)) or
σ′ ∈ O(πr)(O(a)(σ)).

If σ′ ∈ O(π)(σ), then there is a transition sequence of the form

〈π, σ〉 →x . . .→x 〈ε, σ′〉
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i.e., if πρ
h � πρ

b is an arbitrary rule ρ that is applicable to π, where π = πρ
h; πρ

r ,
there are transition sequences of the form

〈πρ
h; πρ

r , σ〉 →apply 〈πρ
b ; πρ

r , σ〉 →x . . .→x 〈ε, σ′〉 (4.2)

or, if π = a; πr, of the form

〈a; πr, σ〉 →exec 〈πr , σ
′′〉 →x . . .→x 〈ε, σ′〉. (4.3)

In case σ′ has resulted from a transition sequence of form (4.2), we prove

σ′ ∈ O(πρ
r )(O(πρ

b )(σ)). (4.4)

In case σ′ has resulted from a transition sequence of form (4.3), we prove

σ′ ∈ O(πr)(O(a)(σ)). (4.5)

Assume σ′ has resulted from a transition sequence of form (4.2). We then
have to prove (4.4), i.e., we have to prove that there is a belief base σ′′ ∈
O(πρ

b )(σ), such that σ′ ∈ O(πρ
r )(σ′′). That is, we have to prove that there

are transition sequences of the form 〈πρ
b , σ〉 → . . . → 〈ε, σ′′〉, and of the form

〈πρ
r , σ′′〉 → . . .→ 〈ε, σ′〉.
By definitions 6 and 7, we have that if 〈π1; π2, σ〉 → 〈π′

1; π2, σ
′〉 is a tran-

sition for arbitrary plans π1 and π2, then 〈π1, σ〉 → 〈π′
1, σ

′〉 is also a tran-
sition. By lemma 1, we have that there is a prefix of (4.2) of the form
〈πρ

h; πρ
r , σ〉 → 〈πρ

b ; πρ
r , σ〉 → . . .→ 〈πρ

r , σ′′〉, such that the plan of each configura-
tion in this sequence is of the form πi; π. From this we can conclude the desired re-
sult, i.e., that there are transition sequences of the form 〈πρ

b , σ〉 → . . .→ 〈ε, σ′′〉,
and of the form 〈πρ

r , σ′′〉 → . . .→ 〈ε, σ′〉.
Assume σ′ has resulted from a transition sequence of form (4.3). Then proving

(4.5) is analogous to proving (4.4), except that we do not need lemma 1. �

5 Conclusion and Future Work

As argued, an important reason for defining a variant of 3APL with a composi-
tional semantics, is that it is more likely that it will be possible to come up with
a more standard and easy to use proof system for such a language. A natural
starting point for such an effort is the definition of a proof rule for sequential
composition, analogous to rule (3.1), as specified below (we use the notation of
theorem 1).

{p} a {p′} {p′} πr {q}
∧

ρ

(
{p} πρ

b {p′} and {p′} πρ
r {q}

)
{p} π {q} (5.1)

The soundness proof of this rule is analogous to the soundness proof of rule (3.1)
[8, Chapter 2], but using theorem 1 instead of O(S1; S2)(σ) = O(S2)(O(S1)(σ)).
A complete proof system for compositional 3APL would however also need an
induction rule. We conjecture that it will be possible to define an analogue of
Scott’s induction rule [8, Chapter 5] which is used for proving properties of
recursive procedures, for reasoning about plans in the context of plan revision
rules. Investigating this is however left for future research.
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Abstract. In this paper we present the ITP/OCL tool, a rewriting-
based tool that supports automatic validation of UML class diagrams
with respect to OCL constraints. Its implementation is directly based on
the equational specification of UML+OCL class diagrams. It is written
entirely in Maude making extensive use of its reflective capabilities. We
also give notice of the Visual ITP/OCL, a Java graphical interface that
can be used as a front-end for the ITP/OCL tool.

1 Introduction

The Unified Modeling Language (UML) [1] is a general-purpose visual modeling
language that is used to specify, visualize, construct, and document the artifacts
of a software system. The UML notation is largely based on diagrams. How-
ever, for certain aspects of a model, diagrams often do not provide the level of
conciseness and expressiveness that a textual language can offer. The Object
Constraint Language (OCL) [2] is a textual constraint language. OCL comes to
provide help on precise information specification in UML models.

Validation and testing in software development have been recognized of key
importance for long. There are many different approaches to validation: sim-
ulation, rapid prototyping, etc. We validate a model by checking whether its
instances (also called “snapshots”) fulfill the desired constraints. A number of
CASE tools exist which facilitate drawing and documenting UML diagrams.
However, there is little support for validating models during the design stage and
generally no substantial support for constraints written in OCL. In this paper we
present the ITP/OCL tool, a rewriting-based tool that supports automatic val-
idation of UML class diagrams with respect to OCL constraints. The ITP/OCL
implementation is directly based on the equational specification of UML+OCL
class diagrams developed in [3, 4]. It is written entirely in Maude [5], making
extensive use of its reflective capabilities to implement the user interface, thanks
to which the tool’s underlying equational semantics remains hidden to the user,
who only must be familiar with the standard notions of UML diagrams and OCL
constraints.

� Research supported by Spanish MEC Projects TIC2003-01000, TIN2005-09207-C03-
03, and by Comunidad de Madrid Program S-0505/TIC/0407.

M. Johnson and V. Vene (Eds.): AMAST 2006, LNCS 4019, pp. 368–373, 2006.
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2 UML+OCL Diagrams

The UML static view models concepts in the application domain as well as
internal concepts invented as part of the implementation of an application. It
does not describe the time-dependent behavior of the system, which is described
in other views. Key elements in the static view are classes and their relationships,
which can be of different kinds, including associations and generalizations. The
static view is displayed in class diagrams.

Example 1. Consider the class diagram TRAINWAGON shown in Figure 1. It
models an example from a railway context. A train may own wagons, and wagons
may be connected to other wagons (their predecessor and successor wagons).
Wagons can be either smoking or non-smoking.

Train
Wagon

smoking:Boolean
train wagon

1 *Ownership

[0..1]pred

Order

[0..1] succ

Fig. 1. The class diagram TRAINWAGON

A system may be in different states as it changes over time. An object diagram
models the objects and links that represent the state of a system at a partic-
ular moment. An object is an instance of a class. A link is an instance of an
association. An object diagram is primarily a tool for research and testing.

Example 2. Consider now the object diagram TRAINWAGON-1 shown in Fig-
ure 2. It describes a snapshot of the railway system modeled by the class diagram
TRAINWAGON, although possibly an “undesired” one since it describes a train
with two wagons linked in a cyclic way!

Train1:Train

Wagon1:Wagon
smoking:true

Wagon2:Wagon
smoking:false

Ownership

Ownership

Order Order

Fig. 2. The object diagram TRAINWAGON-1

OCL is a pure specification language on top of UML. It is a textual language
with a notational style similar to common object oriented languages.

Example 3. Consider the following constraint over the class diagram TRAIN-
WAGON: There do not exist two different wagons directly linked to each other
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in a cyclic way. This constraint can be expressed using OCL as the following
invariant notInCyclicWay over the class diagram TRAINWAGON:

not ((Wagon.allInstances)
→exists(w1:Wagon | (Wagon.allInstances) →exists(w2:Wagon |

w1:Wagon <> w2:Wagon
and (w1:Wagon.succ) → includes(w2:Wagon)
and (w2:Wagon.succ) → includes(w1:Wagon)))) .

The object diagram TRAINWAGON-1 does not satisfy this constraint, since there
exists two wagons, namely Wagon1 and Wagon2, such that the successors of
Wagon1 include Wagon2, and the successors of Wagon2 include Wagon1.

3 The ITP/OCL Tool

The ITP/OCL tool is based on the equational specification of UML+OCL class
diagrams developed in [3, 4], according to which: i) class and object diagrams
are specified as membership equational theories; ii) constraints are represented
as Boolean terms over extensions of those theories; and iii) validating object
diagrams with respect to constraints is reduced to checking whether the corre-
sponding Boolean terms rewrite to true or false. The ITP/OCL tool is written
entirely in Maude [5], a term-rewriting based programming language that im-
plements membership equational logic (and rewriting logic). Maude is also a
reflective programming language. This means, in particular, that both its parser
and its rewriting engine are available to the programmer as built-in operations:
we have taken advantage of the latter to implement the tool’s OCL parser and
of the former to implement the tool’s UML+OCL rewriting-based validation
engine. The implementation of the ITP/OCL tool comprises around 4,000 lines
of Maude code. The latest version of the ITP/OCL tool, with the available
documentation and a collection of examples (that includes class diagrams with
enumeration classes, association classes, generalizations, attributes and query
operations), can be found at http://maude.sip.ucm.es/itp/ocl/.

The implementation of an interactive tool in Maude comprises four different
tasks: defining a read-eval-print loop; defining the syntax for the commands;
defining the interaction with the loop; and defining the processing of the com-
mands. Maude provides a generic input/output facility through its “loop ob-
jects” terms. It also provides great flexibility to define the syntax for the com-
mands thanks to its mixfix front-end and to the use of bubbles (any nonempty
list of Maude identifiers). Finally, the processing of the requests made to an
interactive tool is defined in Maude by equations acting on the loop objects
terms.

The ITP/OCL’s commands can be grouped in four classes:

– Commands that create a diagram. They are defined by equations that add
to the tool’s database the module that, according with the tool’s semantics,
specifies an empty class (respectively, object) diagram. For example, to create
a class diagram we use the command (create-class-diagramCD .), where
CD is the class diagram’s name.
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– Commands that insert an element (class, attribute, association, and so on)
in a diagram. They are defined by equations that add to the module speci-
fying the diagram in the tool’s database the declarations (sorts, operators,
memberships, equations) that, according with the tool’s semantics, specify
that the diagram has this element. E.g., to insert a class we use the command
(insert-class CD : C .), where CD is the class diagram’s name and C
is the class’ name.

– Commands that state a constraint over a class diagram. They are defined by
equations that associate to the module specifying the class diagram in the
tool’s database the Boolean term that, according with the tool’s semantics,
represents this constraint. For instance, to state a contextualized invariant
we use the command (insert-invariant CD : C : INV .), where CD is
the class diagram’s name, C is the contextual class’ name, and INV is the
invariant.

– Commands that validate an object diagram. They are defined by equations
that check whether the Boolean terms representing the invariants reduce to
true or false in the module that, according with the tool’s semantics specifies
the union of the class diagram, along with its invariants, and the object
diagram. E.g., to check whether an object diagram validates the invariants
stated over the class diagram of which it is an instance, we use the command
(check-invariants CD : OD .), where CD is the class diagram’s name
and OD is the object diagram’s name.

4 The Visual ITP/OCL Tool

The Visual ITP/OCL is a Java graphical interface for the ITP/OCL tool.1

Events on the Visual ITP/OCL’s worksheets and toolbars are transformed into
ITP/OCL commands and are interpreted and executed in a Maude process run-
ning the ITP/OCL tool. In its current state:

– Diagrams can be graphically created in a similar way to other CASE tools,
like Rational Rose [6] or Gentleware Poseidon UML [7]. By clicking, drag-
ging, and dropping on the class diagram’s (respectively, object diagram’s)
worksheet and toolbar, the user can interactively insert, modify, and delete
classes and associations (respectively, objects and links.) Several class dia-
grams can be opened at the same time. Object diagrams are associated to
their class diagrams. There is also a zooming facility to increase/decrease
the scale. Finally, diagrams can also be saved (and loaded from) a MySQL
database and can be exported as eps-files.

– Constraints on class diagrams (respectively, queries on object diagrams) are
inserted through an OCL editor and parser. Constraints inserted in a class
diagram can be automatically checked over specific object diagrams. Queries
can also be automatically evaluated.

1 The Visual ITP/OCL tool is being developed by F. Alcaraz, J. P. Gavela, and
J. Arias as a Master’s project.
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5 Related and Future Work

A number of CASE tools exists which facilitate drawing and documenting UML
diagrams [6, 7, 8]. However, there is little support for validating models during
the design stage and generally no substantial support for constraints written
in OCL. The USE tool [9] is, however, a significant exception. The USE tool
expects as input a textual description of a model and its constraints. This tex-
tual description is then displayed in a graphical interface. Objects and links
can be then graphically created by a drag and drop facility. In every system
state, the constraints can be automatically checked. The USE tool also supports
the validation of sequence diagrams by checking that, for each step in the se-
quence, the initial and the resulting diagrams satisfy, respectively, the pre- and
post-conditions constraining the application of the corresponding (non-query)
operation. This feature is not yet supported by the ITP/OCL tool. Notice, how-
ever, that validating sequence diagrams à la USE only requires the capability
of checking constraints (the pre- and post-conditions) over object diagrams. We
plan to add this feature in the next version of the ITP/OCL tool.

The ITP/OCL tool is based on the equational specification of UML+OCL
class diagrams: validating invariants over (or evaluating OCL queries in) ob-
ject diagrams is done by rewriting the corresponding term in the corresponding
equational specification. This is clearly different from the USE tool’s underlying
semantics and its corresponding evaluation mechanism [10]. Finally, as suggested
by various of our referees, we have tried a first comparison between both tools.
In particular, Table 1 shows the time (in seconds) consumed the tools to val-
idate a number of constraints over two object diagrams, TRAINWAGON-10x25
and TRAINWAGON-10x100, of the class diagram TRAINWAGON. In addition to
the constraint notInCyclicWay introduced in Section 2, we have considered the
following constraints:

– All trains must own at least one wagon.

context Train inv atLeastOnewagon:
self:Train.wagon size() ≥ 1.

– A wagon and its successor wagon should belong to the same train.

context Wagon inv belongToTheSameTrain:
self:Wagon.succ →notEmpty() implies
self:Wagon.succ → forAll(w:Wagon | (w:Wagon.train = self:Wagon.train)).

– All trains will have the same number of wagons.

context Train inv sameNumberOfWagons:
Train.allInstances → forAll (t1:Train |
(self:Train <> t1:Train implies
(self:Train.wagon → size() = t1:Train.wagon → size()))).

The object diagram TRAINWAGON-10x25 contains 10 trains and 250 wagons,
each train is linked to 25 different wagons, which are linked in the expected
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Table 1. Validation times

TRAINWAGON-10x25 TRAINWAGON-10x100
USE ITP/OCL USE ITP/OCL

atLeastOnewagon 0.055s 0.076s 0.034s 0.116s
belongToTheSameTrain 0.207s 0.076s 0.970s 0.780s
sameNumberOfWagons 0.202s 0.120s 0.241s 0.936s

notInCyclicWay 45.745s 13.788s 2819.410s 233.710s

way; that is, each wagon has a predecessor and a successor, except for the
first and the last wagon. The object diagram TRAINWAGON-10x100 contains
10 trains and 1000 wagons, each train is linked to 100 different wagons, which
are also linked in the expected way. The object diagrams TRAINWAGON-10x25
and TRAINWAGON-10x100 satisfy indeed our four constraints. The validations
have been carried out in a laptop computer with a 2GHz Pentium processor and
1 GB RAM. As expected, validating the constraint notInCyclicWay takes more
time; essentially, it has to make, respectively, 250 × 250 and 1000 × 1000 com-
parisons. However, the time consumed by the USE tool is unexpectedly high.
We have tried to obtain from the USE community an explanation for this fact
(which may be simply due to our inexpert use of the tool) but we have not get
an answer yet; as soon as we get it, we will publish it in the ITP/OCL web page.
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Abstract. Symmetry reduced model checking is hindered by two prob-
lems: how to identify state space symmetry when systems are not fully
symmetric, and how to determine equivalence of states during search.
We present TopSpin, a fully automatic symmetry reduction package for
the Spin model checker. TopSpin uses the Gap computational algebra
system to effectively detect state space symmetry from the associated
Promela specification, and to choose an efficient symmetry reduction
strategy by classifying automorphism groups as a disjoint/wreath prod-
uct of subgroups. We present encouraging experimental results for a va-
riety of Promela examples.

1 Introduction

Model checking concurrent systems comprised of replicated components can po-
tentially be made easier by exploiting symmetries of a model of the system, in-
duced by the replication. If such component symmetries can be identified before
search then the model checking algorithm can be modified to consider a single
state from each equivalence class of symmetric states. This results in reduced
space requirements for verification by model checking.

However, symmetry reduction can only speed up model checking if an efficient
procedure is available to determine whether or not a given state is equivalent
to a previously reached state. A common approach to solving this problem for
explicit state model checking is, given a total ordering on states and a symmetry
group G, to convert a state s to min[s]G—the smallest state in the equivalence
class of s under G—before it is stored. Thus efficient algorithms are required to
compute min[s]G. This is the constructive orbit problem, which has been proved
to be NP-hard [4]. Current implementations of symmetry reduction techniques
for explicit state model checking, such as SymmSpin [2], are limited to dealing
with full symmetry between components of a concurrent system—both symmetry
detection and on-the-fly representative computation are easy for this special case.
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In previous work we proposed a framework for the automatic detection of
arbitrary structural symmetry, with an implementation for the Promela speci-
fication language [6]. In this paper we present TopSpin, a symmetry reduction
package for the Spin model checker which uses exact and approximate strategies
for dealing with such arbitrary symmetries. The tool draws on theory and tech-
nology from computational group theory to efficiently compute equivalence class
representatives. In particular, the Gap computational algebra system [10] is used
both for symmetry detection, and for classifying an arbitrary group based on its
structure as a direct/wreath product of basic subgroups, so that an appropriate
symmetry reduction strategy may be chosen. For groups which cannot be clas-
sified in this way, TopSpin uses an approximate symmetry reduction strategy
based on hillclimbing local search, which is sub-optimal in terms of memory re-
quirements but fast and safe. We present experimental results which demonstrate
the effectiveness of our techniques. TopSpin, together with Promela code for the
specifications described in Sect. 5, can be found on our website [7]. Throughout
the paper, we assume some basic knowledge of group theory.

2 Background and Notation

Spin [11] is the bespoke model checker for the Promela specification language,
and provides several reasoning mechanisms: assertion checking, acceptance and
progress states and cycle detection, and satisfaction of temporal properties, ex-
pressed in linear temporal logic (LTL). Spin translates each component defined
in a Promela specification into a finite automaton and then computes the asyn-
chronous interleaving product of these automata to obtain the global behavious
of the concurrent system. This interleaving product is essentially a Kripke struc-
ture M = (S, so, R, L), where S is a finite set of states with initial state s0,
R ⊆ S×S a total transition relation, and L : S → 2AP a labelling function. The
set AP of atomic propositions refer to the values of local and global variables,
and contents of buffered channels.

A bijection α : S → S which satisfies, for all (s, t) ∈ R, (α(s), α(t)) ∈ R, is an
automorphism or symmetry ofM, and all such symmetries form a group Aut(M)
under composition of mappings. If a subgroup G of Aut(M) is known in advance
then model checking can be performed over a quotient Kripke structure, MG,
typically smaller than the original [12]. Kripke structure automorphisms induced
by symmetry between components of the concurrent system, i.e. bijections of
the component index set which give rise to automorphisms when lifted to act
component-wise on states, are called component symmetries [9]. In this work we
restrict our attention to component symmetries. If G ≤ Aut(M) and s ∈ S, then
[s]G = {α(s) : α ∈ G} is the orbit of s under G.

3 An Overview of TopSpin

In order to check properties of a Promela specification, Spin first converts
the specification into a C source file, pan.c, which is then compiled into an
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executable verifier. The state space thus generated is then searched. If the prop-
erty being checked is proved to be false, a counterexample is given. TopSpin
follows the approach used by the SymmSpin symmetry reduction package [2],
where pan.c is generated as usual by Spin, and then converted to a new file,
sympan.c, which includes algorithms for symmetry reduction. With TopSpin
because we allow for arbitrary system topologies, symmetry must be detected
before sympan.c can be generated. This is illustrated in Fig. 1.

First, the static channel diagram (SCD) of the Promela specification is ex-
tracted by the SymmExtractor tool [6]. The SCD is a graphical representation of
potential communication between components of the specification. The group of
symmetries of the SCD, Aut(SCD), is computed using the saucy tool [5], which
we have extended to handle directed graphs. The generators of Aut(SCD) are
checked against the Promela specification for validity (an assurance that they
induce symmetries of the underlying state space). TopSpin uses Gap to com-
pute, from the set of valid generators, the largest group G ≤ Aut(SCD) which
can be safely used for symmetry-reduced model checking. Gap is then used to
classify the structure of G in order to choose an efficient symmetry reduction
strategy. The chosen strategy is merged with pan.c to form sympan.c, which
can be compiled and executed as usual.

Fig. 1. The symmetry reduction process

4 Symmetry Reduction Strategies

We refer to processes and channels of a Promela specification as components,
and restrict our attention to Promela specifications with a fixed number of com-
ponents. Throughout, we assume that G ≤ Sn is a nontrivial symmetry group
for a Promela specification consisting of n components. In this section we outline
various strategies which TopSpin uses to compute min[s]G for a state s and an
arbitrary group G. An appropriate strategy for G is chosen based on analysis of
the structure of G before search. Note that, during verification, the C function
memcmp provides a total ordering on states.
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4.1 The Strategies

Enumeration. If G is a relatively small group (|G| < 100 say) then for a state
s, min[s]G can be computed by enumerating the elements of G, and returning
min{α(s) : α ∈ G}. TopSpin implements this approach with two optimisations,
applied simultaneously. As the operation of applying a transposition to a state is
less expensive than that of applying an arbitrary permutation, a group element
α is expressed as a product of transpositions and α(s) is computed by applying
these transpositions to s in order. TopSpin uses a stabiliser chain to enumerate
the elements of G. Given a stabiliser chain G = G(1) ≥ G(2) ≥ · · · ≥ G(k) = {id}
for some k > 1, every element of G can be uniquely expressed as a product
uk−1uk−2 . . . u1, where, for 1 ≤ i < k, ui is a representative of a coset of G(i+1)

in G(i) [3]. Thus each α ∈ G need not be applied to a state s from scratch:
partial images of s under the coset representatives may be re-used.

Minimising Sets. Using terminology from [9], a group H is said to be nice if
there is a small set X ⊆ H such that t = min[s]H iff α(t) ≥ t ∀α ∈ X . If H is
nice with respect to a subset X then we call X a minimising set for H . Given
a minimising set X for G, the element min[s]G can be computed by setting
t = s, and applying elements of X to t until a fixpoint is reached. TopSpin
uses this symmetry reduction strategy in cases where G is isomorphic to a fully
symmetric group Sm, for some m ≤ n, which simultaneously permutes several
disjoint subsets of {1, 2, . . . , n}. (Such groups occur commonly in practice, e.g.
a set of processes may have associated channels, so that any permutation of the
processes must also permute the associated channels.) In this case, let αi,j denote
the permutation which simultaneously transposes the ith and jth elements of
each subset. If G is generated by the set X = {σj,k : 1 ≤ j < k ≤ m} then it
can be shown that X is a minimising set for G, and |X | is quadratic in n even
though G may be very large. If TopSpin detects that G is isomorphic to Sm for
some m ≤ n then it attempts to construct a minimising set of the above form.

Disjoint Products. If G is the disjoint product of subgroups H1, H2, . . . , Hk

for some k > 1 then min[s]G = min[. . .min[min[s]H1 ]H2 . . . ]Hk
[4]. TopSpin

constructs an equivalence relation on the generators of G to detect whether G
is a disjoint product. The approach is very efficient, but not complete—it does
not guarantee detection of the finest decomposition of G as a disjoint product.
However, we have found it to work well in practice.

Wreath Products. If G is a wreath product H %K of two subgroups H and
K then G contains r copies of H for some r ≥ 1, denoted H1, H2, . . . , Hr,
which each permute elements within a distinct “block” of components of the
specification, and K permutes the blocks. In this case, it can be shown that
min[s]G = min[min[. . .min[min[s]H1 ]H2 . . . ]Hr ]K [4]. If reduction strategies can
be found for H and K, then analogous strategies to that for H can easily be
obtained for each Hi, and min[s]G can be computed by applying the strategy
for each Hi, followed by the strategy for K. To efficiently detect a wreath prod-
uct decomposition for G, TopSpin identifies candidate blocks by using Gap to
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compute non-trivial block systems for G. Corresponding groups H and K are
derived for the candidate blocks, and a check is made to see whether or not G
is the wreath product of these groups.

Local Search. If none of the above strategies are applicable then, since enu-
meration is very expensive, it may be infeasible to compute min[s]G. TopSpin
implements an approximate symmetry reduction strategy based on hillclimbing
local search using the group generators, which does not guarantee unique repre-
sentatives, but is safe to use when model checking as it guarantees storage of at
least one state per equivalence class. Though not as space-efficient as enumera-
tion, this strategy can work considerably faster.

4.2 Choosing a Reduction Strategy

TopSpin uses a top-down recursive algorithm to choose a symmetry reduction
strategy for an arbitrary group G with respect to a set of n components. If G is
isomorphic to a cyclic group and |G| ≤ n, or to a dihedral group and |G| ≤ 2n,
then the enumeration strategy is selected. If |G| is isomorphic to the group Sm

for some m ≤ n then TopSpin attempts to construct a minimising set for G of
the form described above, so that the minimising set strategy can be chosen.
If G can be shown to decompose as a product of subgroups then a composite
strategy is obtained by choosing a strategy for each subgroup. Otherwise, the
local search strategy is chosen. In order to compare strategies it is possible to
select the strategy used (rather than let TopSpin choose the most efficient).

5 Experimental Results

Table 1 gives experimental results applying our techniques to three families of
Promela specifications. For each specification, we give the number of model states
without symmetry reduction (orig), with full symmetry reduction (red), and
using the strategy chosen by TopSpin (best). If the latter two are equal, ‘=’
appears for the TopSpin strategy. The use of state compression, provided by
Spin, is indicated by the number of states in italics. For each strategy (basic
for enumeration without the optimisations described in Sect. 4.1, enum for op-
timised enumeration, and best for the strategy chosen by TopSpin), and when
symmetry reduction is not applied (orig), we give the time taken for verification
(in seconds). Verification attempts which exceeded available resources, or did not
terminate within 5 hours, are indicated by ‘-’. All experiments were performed
on a PC with a 2.4GHz Intel Xeon processor, 3Gb of available main memory,
running Spin version 4.2.3. The first family of specifications model flow of control
in a three-tiered architecture consisting of a database, a layer of p servers, and a
layer of pq clients, where q clients are connected to each server (a D-S-C system).
Here models exhibit wreath product symmetry: there is full symmetry between
the q clients in each block, and the blocks of clients, with their associated servers,
are interchangeable. A configuration with p servers and q clients per server is
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Table 1. Experimental results for various configurations of the three-tiered (D-S-C),
resource allocator (R-C) and hypercube (HC) specifications

system config. states time |G| states time time states time
orig orig red basic enum best best

D-S-C 2/3 103105 5 72 2656 7 4 = 2
D-S-C 2/4 1.1 × 106 37 1152 5012 276 108 = 2
D-S-C 3/3 2.54×107 4156 1296 50396 4228 1689 = 19
D-S-C 3/4 - - 82944 130348 - - = 104
R-C 3,3 16768 0.2 36 1501 0.9 0.3 = 0.1
R-C 4,4 199018 2 576 3826 57 19 = 0.4
R-C 5,5 2.2 × 106 42 14400 8212 4358 1234 = 2
R-C 4,4,4 2.39 × 107 1587 13824 84377 - 12029 = 17
R-C 5,5,5 - - 1728000 254091 - - = 115
HC 3d 13181 0.3 48 308 0.6 0.3 468 0.2
HC 4d 380537 18 384 1240 58 34 6986 13
HC 5d 9.6×106 2965 3840 3907 7442 5241 90442 946

denoted p/q. The second family of specifications model a resource allocator
process which controls access to a resource by a competing set of prioritised
clients (an R-C system). Models of these specifications exhibit disjoint product
symmetry: there is full symmetry between each set of clients with the same prior-
ity level. A configuration with pi clients of priority level i is denoted p1, p2, . . . , pk,
where k is the number of priority levels. Finally, we consider specifications mod-
elling message routing in an n-dimensional hypercube network (an HC system).
The symmetry group here is isomorphic to the group of geometrical symmetries
of an n-dimensional hypercube, which cannot be decomposed as a disjoint or
wreath product of subgroups, and thus must be handled using either the enu-
meration or local search strategies. An n-dimensional hypercube specification is
denoted nd. For all specifications, we verify deadlock freedom, and check the
satisfaction of basic safety properties expressed using assertions.

In all cases, the basic enumeration strategy is significantly slower than the
optimised enumeration strategy, which is in turn slower than the strategies cho-
sen by TopSpin. For hypercube configurations, TopSpin chooses the local search
strategy, which requires storage of more states than the enumeration strategy,
but still results in a greatly reduced state space.

6 Related and Future Work

The SymmSpin symmetry reduction package avoids the problem of automatic
symmetry detection by requiring symmetries to be specified using scalarsets,
an approach proposed in [12]. Scalarsets can only specify full symmetry between
identical components, thus the three-tiered architecture and hypercube examples
of Sect. 5 could not be handled by SymmSpin. Multiple scalarset types could
be used to specify symmetry between clients with the same priority level in the
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resource allocator example, but the automatic approach to symmetry detection
provided by TopSpin is clearly preferrable.

Automatic symmetry detection by static channel diagram analysis is similar
to an approach for deriving symmetry in a shared variable model of comunication
[4]. However, this approach is not directly applicable to the specification language
of a mainstream model checker such as Spin. Certain classes of groups for which
orbit representatives can be efficiently computed are also presented in [4]. We
extend this work by providing techniques to automatically determine whether a
group belongs to one of these classes.

Future work includes extending TopSpin to allow symmetry-reduced verifica-
tion of LTL properties under weak fairness, as described in [1]. This will involve
combining strategies for representative computation with the nested depth first
search algorithm employed by Spin [11]. The notion of virtual symmetry is sug-
gested in [8] to deal with systems which are “almost” symmetric. The symme-
try detection techniques which TopSpin uses could potentially be extended to
handle virtual symmetry, allowing state-space reductions for examples with less
symmetry than those which we present.
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The Prométhée Framework

Paul-Christophe Varoutas1,2,�, Philippe Rizand2, and Alain Livartowski1

1 Institut Curie, Service d’Information Médicale. 25 rue d’Ulm, 75005 Paris, France
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Abstract. It is generally acknowledged that integration of large-scale
information systems is a challenging problem. A domain that particu-
larly encounters this problem currently is healthcare, where information
systems tend to be heterogeneous and in constant evolution. A particu-
lar need for health professionals is the ability to ask medical questions
across a heterogeneous information system, then visualise and analyse
the results in a synthetic and coherent manner. In this paper, we present
a case study of a heterogeneous data source search meta-engine frame-
work, based on category theory. This framework addresses the problem
of cross-interrogation of heterogeneous data sources, such as relational
database management systems, documentary database systems, or col-
lections of documents. It additionally attempts to address the problem
of constant evolution of such information systems. The framework has
been successfully applied to the biomedical data of the medical infor-
mation system at the Institut Curie, a major French cancer care centre.
Different aspects of this work are illustrated, such as the mathematical
foundations of the Prométhée framework, the methodology used for its
implementation, and the impact that Prométhée has encountered since
its deployment in a hospital environment.

1 Introduction

Integration of large-scale information systems is a topic well recognized as both
challenging and important. The integration problem particularly arises in current
health information systems. In hospitals, the difficulty originates not only from
the heterogeneity of the specialized medical systems and equipment, but also
from the constant change of the information system. Indeed, the continuous
progress in medicine and science, the evolution of medical procedures which affect
the hospital’s organization, and the constant evolution of underlying technologies
lead to a constant evolution of the information systems.

Heterogeneous data source integration is a complex problem which has various
levels and aspects, such as cross-aggregation, -interoperability, -quality control,
� Contact author.
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and -interrogation of data. Of particular interest to health professionals is the
need to formulate medical or health-related questions, ask them across a hetero-
geneous medical information system, and finally visualise and analyse the results
in a synthetic and coherent way.

The Institut Curie, a cancer care centre in Paris, France, has recently suc-
ceeded in conceiving, specifying, implementing and deploying a solution that
enables the cross-interrogation of its medical information system by its autho-
rized healthcare professionals.

In this paper, we present this short case study of a framework, based on
algebraic methodological concepts, that addresses both the problems of cross-
interrogation of a large-scale heterogeneous medical information system, and of
adaptation to constant evolutions of the information system.

2 The Concept of Prométhée

Prométhée is a framework that enables the deployment, within an entity, cor-
poration or institution (the term ”agency” will be used from now on), of a fully
functional infocentre that enables the aggregation, cross-interrogation, visual-
ization and simple statistical analysis of a large-scale heterogeneous information
system.

Prométhée attempts to directly address the complexity of both the hetero-
geneity and constant evolution of large-scale information systems. It operates
without requiring modification or adaptation of the different data sources it in-
terconnects. It is specifically designed to minimize the maintenance tasks needed
when data sources are modified or replaced.

As constantly evolving technology is one of the major problems to be ad-
dressed by such a framework, we support the opinion that technology by itself
cannot be the basis for a sustainable solution to the problem. This is the reason
why Prométhée does not rely on technologies, but rather on a theoretic model
which is based on algebraic concepts.

The theoretic data model of Prométhée mainly relies on category theory, graph
theory and set theory. We have made no theoretic advances in these fields; instead
we have combined and applied them to address the problem of integration and
cross-interrogation of large-scale heterogeneous information systems.

In order to deploy Prométhée within an agency, the first step consists in defin-
ing one or more ontology diagrams containing the major entities manipulated
during the agency’s activity, as well as possible transformations between these
entities. These ontology models are created using a specialized user interface.
They are stored in the algebraic model of Prométhée, which is based on cat-
egory theory (figure 1). The use of category theory to support ontologies in
information systems integration is treated in some detail in [3], [4].

Once the ontological diagram has been defined, data sources (or subsets of
sources) can then be easily attached at any entity (domain) of the diagram
(category). Data sources thus become entities (domains) themselves within the
diagram.
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Fig. 1. Simplified diagram illustrating a subset of the Prométhée category model as ap-
plied to the hospital information system of the Institut Curie. The ontological diagram
can be viewed as a category, the entities as domains, and the arrows as morphisms
between different domains.

Data sources that are attachable to the model in our functional prototype
include: Relational Database Management Systems (such as Oracle, MySQL,
PostgreSQL and Microsoft SQL Server), Documentary Management Systems
(such as Lotus Notes), HTML (web) content, XML content, and collections of
files (such Microsoft Word or Adobe PDF documents).

In the following example drawn from the medical information system of the In-
stitut Curie, data sources attached to the ontological diagram include the patient
identity server, the hospitalisation, radiology and surgery reports documentary
systems, the PMSI system (this system, present in all French hospitals, reports
the hospital’s activity to the French Ministry of Health), the e-prescription sys-
tem, and the chemotherapy database system (figure 2).

In order to ask a medical question across the information system via
Prométhée (figure 3), an authorized professional uses the framework’s web user
interface. He first selects one or more data sources, and then formulates his
question by filling in one or several web forms. When a query is submitted, it
is first processed by the query translation module. This module translates the
web form-formulated question into computer search engine and into human lan-
guage. The first makes the query understandable by a particular search engine,
the latter enables the user to verify the correct formulation of his question. The
query, frequently consisting of several subqueries, is then addressed to the meta-
engine, which dispatches the subqueries to one or more different search engines.
The engines either query the data sources directly, or query specific indexes gen-
erated and maintained by Prométhée. They then collect the subquery results.
The engines then address their sets of results to the meta-engine. These sets are
processed by the meta-engine’s algebraic model, via consecutive set operations
and entity transformations using the morphisms defined in the meta-engine’s
category theory model. The final results of the query are obtained, and rendered
to the user via the user interface.
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Fig. 2. Attaching heterogeneous data sources to the category model. Note that different
subsets of the same system can be attached to different domains of the model.

Fig. 3. Prométhée simplified use case diagram

3 Software Design Methodology

The Prométhée concept has been translated into a framework specification, us-
ing design pattern methodology. This specification has been implemented into
a software development kit (Prométhée SDK), which is a set of coordinated ob-
jects, components and services. It is a generic toolkit, designed to address various
aspects of heterogeneous data source integration, cross-interrogation, and cross-
interrogation related problems.

The Prométhée SDK has been used to derive various applications, services and
tools. Some examples are a web application that enables to design the integrated
model of a heterogeneous information system, a web application which enables
users to cross-query the information system, or a cross-heterogeneous data source
quality control system that generates nightly quality reports.
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For the framework’s specification and implementation, we are using vari-
ous software design paradigms. Using methodologies based on experimenta-
tion, quick prototyping and testing, we selected the most appropriate paradigms
to accomplish specific tasks and/or roles within the Prométhée framework, in
terms of design, maintainability, and evolutivity. For example, object-oriented
and component-oriented programming are used for the user interfaces, aspect-
oriented programming is used to provide authorization and audit capabilities;
functional programming is heavily used within the algebraic model. At the high-
est design level, subsystems are encapsulated using object-oriented methodology
and their interactions are formalized using design pattern methodology.

4 Applying the Concept: The Institut Curie’s Medical
Infocentre

The Institut Curie is the conjunction of a hospital and a research centre focused
on cancer. It is a private, non-profit foundation accredited as a public service
since 1921, and constitutes a ”reference site” in the French health care system.
The Institut Curie’s originality relies on its double mission of treatment of and
research on cancer, as well as the continuity between its various activities, from
fundamental research to clinical research to healthcare.

The Institut Curie hospital specialises in breast cancer, paediatric tumours,
ocular tumours, and sarcomas. It is one of the first fully-computerized cancer
care centres in Europe, and relies on the sum of 60 distinct ICT systems. Each
one of these systems ensures the coherency, quality, traceability, availability and
completeness of one or more specific medical or medico-technical activities.

Prométhée currently interconnects 30 of these systems. Integrated information
covers patient identity data, tumour identity data, medical reports (hospitali-
sation, surgery, consultation, etc), clinical (biostatistics) data, pathology data
(reports, tissue images, marker/antibody analysis results, etc), radiology data,
radiotherapy data, specimen banks (tumour, serum, haematology, pharmacology,
and genetics banks). From the content-type point of view, this covers structured,
free-text and multimedia data.

5 Impact

In 2005, the European Commission launched its eHealth Impact Study [2], with
the objective to develop a generic, context-adaptable assessment and evaluation
method for eHealth applications and services, and obtain reliable evidence on
the positive (economic and other) impacts of eHeath systems used in real-life
medical or health situations, by applying the method in depth at ten sites.

Together with Elios, the Institut Curie’s electronic patient record, Prométhée
has been selected to feature within a list of 100 good practice examples from all
EU Member States and across all important Information Technology (IT) for
Health application fields. Furthermore, our Institute has been selected as one of
the ten European sites where an in-depth impact study was conducted [5].
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This study shows that, since its first deployment in 2002, the Prométhée
medical infocentre is increasingly used by the healthcare professionals of our
Institute (figure 4).

Fig. 4. Usage statistics of Prométhée since 2002. Each use in the chart represents a
cross-interrogation, a 1- or 2-variable statistical analysis, or a data export of query
results. Note that the leap observed between 2002 and 2003 corresponds to a major
version release of Prométhée.

Additionally, the study analyses the progressive use of the tool in different
and increasingly complex cognitive contexts of use: activity reporting, support
to medical training or course preparation, support to the management of human-
specimen bank systems where the management needs to be based on criteria
present in independent information systems, and evaluation of medical practices
[1, 6].

Finally, an interesting conclusion of this study is that, after 4 years of de-
ployment, Prométhée matures towards an operational steering tool to support
the reorganisation of medical processes, progressively leading to major organiza-
tional impact as well as improved economic efficiency. Thus we could speculate
that, after succeeding to adapt to numerous evolutions of the hospital’s needs
and organization, Prométhée starts to contribute itself to this evolution.

These results are in compliance with our initial goal to design a tool that is
generic and flexible enough to enable its use in particular cognitive contexts,
which were not envisaged or formalized during the tool’s design phase.

6 Future Developments

As the framework will continuously be used in the safety-critical hospital envi-
ronment of the Institut Curie, we currently seek to enhance and further develop
the Prométhée meta-engine in terms of algebraic methodological tools and math-
ematical correctness.
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The Prométhée meta-engine, as a service, provides a framework upon which
various new applications can be built. Our current efforts are oriented towards
cross-heterogeneous data source specialized views, quality control, and event-
triggered notification systems.

7 Conclusion

Prométhée probably defines a novel family of heterogeneous data source search
meta-engine tools, based on category theory. Applied to the hospital environment
of the Institut Curie, it proves to be an ideal framework to support the emerging
needs of biomedical informatics and health informatics.

While the tool is not directly used for healthcare delivery, it is used in a
safety-critical environment, and in increasingly complex situations. Thus, the
theoretic foundations for this type of systems must be further formalised. We
seek to participate in this effort by contributing our pragmatic approach and
prototypes used in a real-life medical environment.
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